• Title/Summary/Keyword: plastic work

Search Result 727, Processing Time 0.025 seconds

Evaluation of Structural Stability for a 75-tonf Class Thrust Chamber Mixing Head (75톤급 연소기 헤드부의 구조안정성 평가)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.515-519
    • /
    • 2011
  • Structural tests for the mixing head of a 75tonf class thrust chamber were performed to verify structural stability. The mixing head of a thrust chamber is loaded by high pressure with regeneratively cooled fuel and cryogenic liquid oxygen(LOx) as well as it transfers thrust load generated by liquid rocket engine. Therefore structural stability of mixing head is a very important factor to work without any plastic deformation or structural failure. In this study, two mixing heads were manufactured using different welding methods, Tungsten Inert Gas(TIG) welding and Electron Beam Welding(EBW) and evaluated a structural stability. The results of structural tests showed that the mixing head assembled by EBW can withstand the applied design load without any structural failures and be structurally more stable than that of TIG welding.

  • PDF

Seismic design of chevron braces cupled with MRF fail safe systems

  • Longo, Alessandra;Montuori, Rosario;Piluso, Vincenzo
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1215-1240
    • /
    • 2015
  • In this paper, the Theory of Plastic Mechanism Control (TPMC) is applied to the seismic design of dual systems composed by moment-resisting frames and Chevron braced frames. The application of TPMC is aimed at the design of dual systems able to guarantee, under seismic horizontal forces, the development of a collapse mechanism of global type. This design goal is of primary importance in seismic design of structures, because partial failure modes and soft-storey mechanisms have to be absolutely prevented due to the worsening of the energy dissipation capacity of structures and the resulting increase of the probability of failure during severe ground motions. With reference to the examined structural typology, diagonal and beam sections are assumed to be known quantities, because they are, respectively, designed to withstand the whole seismic actions and to withstand vertical loads and the net downward force resulting from the unbalanced axial forces acting in the diagonals. Conversely column sections are designed to assure the yielding of all the beam ends of moment-frames and the yielding and the buckling of tensile and compressed diagonals of the V-Braced part, respectively. In this work, a detailed designed example dealing with the application of TPMC to moment frame-chevron brace dual systems is provided with reference to an eight storey scheme and the design procedure is validated by means of non-linear static analyses aimed to check the actual pattern of yielding. The results of push-over analyses are compared with those obtained for the dual system designed according to Eurocode 8 provisions.

Full Color Top Emission AMOLED Displays on Flexible Metal Foil

  • Hack, Michael;Hewitt, Richard;Urbanik, Ken;Chwang, Anna;Brown, Julie J.;Lu, Jeng Ping;Shih, Chinwen;Ho, Jackson;Street, Bob;Ramos, Teresa;Rutherford, Nicole;Tognoni, Keith;Anderson, Bob;Huffman, Dave
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • Advanced mobile communication devices require a bright, high information content display in a small, light-weight, low power consumption package. For portable applications flexible (or conformable) and rugged displays will be the future. In this paper we outline our progress towards developing such a low power consumption active-matrix flexible OLED $(FOLED^{TM})$ display. We demonstrate full color 100 ppi QVGA active matrix OLED displays on flexible stainless steel substrates. Our work in this area is focused on integrating three critical enabling technologies. The first technology component is based on UDC's high efficiency long-lived phosphorescent OLED $(PHOLED^{TM})$ device technology, which has now been commercially demonstrated as meeting the low power consumption performance requirements for mobile display applications. Secondly, is the development of flexible active-matrix backplanes, and for this our team are employing PARC's Excimer Laser Annealed (ELA) poly-Si TFTs formed on metal foil substrates as this approach represents an attractive alternative to fabricating poly-Si TFTs on plastic for the realization of first generation flexible active matrix OLED displays. Unlike most plastics, metal foil substrates can withstand a large thermal load and do not require a moisture and oxygen permeation barrier. Thirdly, the key to reliable operation is to ensure that the organic materials are fully encapsulated in a package designed for repetitive flexing, and in this device we employ a multilayer thin film Barix encapsulation technology in collaboration with Vitex systems. Drive electronics and mechanical packaging are provided by L3 Displays.

  • PDF

Changes of dielectric surface state In organic TFTs on flexible substrate (유연한 기판상의 유기 트랜지스터의 절연 표면층 상태 변화에 의한 전기적 특성 향상)

  • Kim, Jong-Moo;Lee, Joo-Woo;Kim, Young-Min;Park, Jung-Soo;Kim, Jae-Gyeong;Jang, Jin;Oh, Myung-Hwan;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.86-89
    • /
    • 2004
  • Organic thin film transistors (OTFTs) are fabricated on the plastic substrate through 4-level mask process without photolithographic patterning to yield the simple fabrication process. And we herewith report for the effect of dielectric surface modification on the electrical characteristics of OTFTs. The KIST-JM-1 as an organic molecule for the surface modification is deposited onto the surface of zirconium oxide $(ZrO_2)$ gate dielectric layer. In this work, we have examined the dependence of electrical performance on the interface surface state of gate dielectric/pentacene, which may be modified by chemical properties in the gate dielectric surface.

  • PDF

Properties of Water Substitute Solid Phantoms for Electron Dosimetry

  • Saitoh, Hidetoshi;Tomaru, Teizo;Fujisaki, Tatsuya;Abe, Shinji;Myojoyama, Atsushi;Fukuda, Kenichi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.255-259
    • /
    • 2002
  • To reduce the uncertainty in the calibration of radiation beams, absorbed dose to water for high energy electrons is recommended as the standards and reference absorbed dose by AAPM Report no.51 and IAEA Technical Reports no.398. In these recommendations, water is, defined as the reference medium, however, the water substitute solid phantoms are discouraged. Nevertheless, when accurate chamber positioning in water is not possible, or when no waterproof chamber is available, their use is permitted at beam qualities R$\_$50/ < 4 g/cm$^2$ (E$\_$0/ < 10 MeV). For the electron dosimetry using solid phantom, a depth-scaling factor is used for the conversion of depth in solid phantoms to depth in water, and a fluence-scaling factor is used for the conversion of ionization chamber reading in plastic phantom to reading in water. In this work, the properties, especially depth-scaling factors c$\_$p1/ and fluence-scaling factors h$\_$pl/ of several commercially available water substitute solid phantoms were determined, and the electron dosimetry using these scaling method was evaluated. As a result, it is obviously that dose-distribution in solid phantom can be converted to appropriate dose-distribution in water by means of IAEA depth-scaling.

  • PDF

Exposure to Bisphenol A through Contact with Thermal Receipts among Service Industry Workers (서비스직 근로자들의 영수증 접촉 정도에 따른 비스페놀A 노출량 조사)

  • Lee, Yuna;Lee, Yujin;Jang, Jiwon;Han, Gaeul;Kho, Younglim
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.6
    • /
    • pp.435-441
    • /
    • 2014
  • Objectives: Bisphenol A, or BPA, is a chemical component in polycarbonate plastic with which many people come into contact every day. A great deal of controversy has arisen over its safety since this material, which is known to disrupt the human endocrine system and cause neurological difficulties and cancer, is commonplace in beverage containers, food can liners, and receipt paper rolls. In this study, we determined the levels of exposure to BPA of workers in the service industry depending on the number of receipts contacted. Methods: The participants were 16 male and 18 female workers employed in the service industry. Using a questionnaire, we investigated general and job characteristics. Urine samples were collected and analyzed by the LC-MS/MS technique after enzymatic hydrolysis and solid phase extraction (SPE). Results: The geometric mean (GM) concentration of urinary BPA from all subjects was 1.02 ng/ml. Workers were exposed significantly to more BPA according to the number of receipts they contacted, their work experience, and working hours per day. The BPA concentration of those who touched more than 100 receipts per day was 3.09 ng/ml, while that of the other participants was 0.61 ng/ml. It was shown that wearing gloves can protect from BPA exposure. Conclusion: We determined the urinary BPA concentrations of workers in service industry and found that the contact with receipts could increase the BPA exposure of service workers.

A case of removable dentures using digital method (디지털 방식을 이용하여 제작한 양악 가철성 의치 수복 증례)

  • Lee, Ji-Soo;Ahn, Su-Jin;Leesungbok, Richard;Lee, Suk-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.250-257
    • /
    • 2018
  • Generally dentures are manufactured by conventional method, however the frequency of fabricating denture using digital method is increasing due to the recent development of digital technology in dentistry. The digital method of manufacturing denture is classified into two systems; 3D scan of the impression to arrange the artificial teeth on the CAD (Computer-aided design) and 3D printing to produce the resin-based complete denture, or 3D scan of the model to design of the framework using CAD, resin pattern formation by 3D printing and casting of metal framework of complete denture or removable partial denture. In this case report, electronic surveying and design the metal framework of the dentures were performed using CAD program, and plastic resin patterns fabricated by 3D printing were casted for upper full denture and lower removable partial denture. During follow-up periods, dentures using digital method have provided satisfactory results esthetically and functionally.

A Optimal 3D FE Model for Evaluation of Peening Residual Stress Under Angled Multi-impacts (다중경사충돌시 피닝잔류응력 평가를 위한 최적의 3차원 유한요소모델)

  • Hyun, Hong-Chul;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.125-135
    • /
    • 2012
  • The FE model for shot peening often assume that shots impact vertically on the engineering parts to generate compressive residual stresses. However, the shots obliquely impact on the surface in actual peening. In this work, we propose a 3D finite element (FE) model for evaluation of residual stress under angled shot peening. Using the FE model for angled multi-impact, we examine the effects of factors such as impact angle, impact pattern and the number of shots. Plastic deformation of shot is also considered. To validate the model, we then compare the FE solution with experimental result by X-ray diffraction (XRD). The proposed model will be a base of 3D multi-impact FE model with diverse impact angles.

The Influence of Dynamic Strain Aging on Tensile and LCF Properties of Prior Cold Worked 316L Stainless Steel (냉간가공된 316L 스테인리스 강의 인장 및 저주기 피로 물성치에 미치는 동적변형시효의 영향)

  • Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1398-1408
    • /
    • 2003
  • Tensile and LCF(low cycle fatigue) tests were carried out in air at wide temperature range 20$^{\circ}C$-750$^{\circ}C$ and strain rates of 1${\times}$10$\^$-4//s-1${\times}$10$\^$-2/ to ascertain the influence of strain rate on tensile and LCF properties of prior cold worked 316L stainless steel, especially focused on the DSA(dynamic strain aging) regime. Dynamic strain aging induced the change of tensile properties such as strength and ductility in the temperature region 250$^{\circ}C$-600$^{\circ}C$ and this temperature region well coincided with the negative strain rate sensitivity regime. Cyclic stress response at all test conditions was characterized by the initial hardening during a few cycles, followed by gradual softening until final failure. Temperature and strain rate dependence on cyclic softening behavior appears to result from the change of the cyclic plastic deformation mechanism and DSA effect. The DSA regimes between tensile and LCF loading conditions in terms of the negative strain rate sensitivity were well consistent with each other. The drastic reduction in fatigue resistance at elevated temperature was observed, and it was attributed to the effects of oxidation, creep and dynamic strain aging or interactions among them. Especially, in the DSA regime, dynamic strain aging accelerated the reduction of fatigue resistance by enhancing crack initiation and propagation.

Studies on the Development of TiAIN/CrN Multi-layered Thin Films by Unbalanced Magnetron Sputtering Process (비대칭 스퍼터링에 의한 TiAIN/CrN 나노 다층 박막의 합성 및 특성 분석에 관한 연구)

  • Kim, Gwang-Seok;Kim, Bom-Sok;Lee, Sang-Yul
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.207-211
    • /
    • 2005
  • In this work a multi-layered nanostructured TiAIN/CrN superlattice coatings was synthesized using closed-field unbalanced magnetron sputtering method and the relationships between their superlattice period (1), micro-structure, hardness and elastic modulus were investigated. In addition, wear test at $500^{\circ}C$ and oxidation resistance test at $900^{\circ}C$ were performed to investigate high temperature properties of these thin films. The coatings were characterized in terms of microstructure and mechanical properties by transmission electron microscopy (TEM) and nano-indentation test. Results from TEM analysis showed that superlattice periods was inversely proportional to the jig rotation speed. The maximum hardness and elastic modulus of 37 GPa and 375 GPa were observed at superalttice period of 6.1 nm and 4.4 nm, respectively. An higher value of microhardness from TiAIN/CrN thin films than either TiAIN (30 GPa) or CrN (26 GPa) was noted while the elastic modulus was approximately an average of TiAIN and CrN films. These enhancement effects in superlattice films could be attributed to the resistance to dislocation glide across interface between the CrN and TiAIN layers. Much improved plastic deformation resistance ($H^3/E^2$) of 0.36 from TiAIN/CrN coatings was observed, compared with 0.15 and 0.16 from TiAIN and CrN, respectively. Also the wear resistance at $500^{\circ}C$ was largely increased than those of single TiAIN and CrN coatings and TiAIN/CrN coatings showed much reduced weight gain after exposure at $900^{\circ}C$ for 20 hours.