• Title/Summary/Keyword: plastic limit

Search Result 508, Processing Time 0.036 seconds

Mis-Match Limit Load Analyses and Approximate J-Integral Estimates for Similar Metal Weld with Weld-Center Crack Under Tension Load (용접부 중앙에 표면균열이 존재하는 인장 평판에 대한 강도 불일치 한계하중 해석 및 간략 J-적분 예측)

  • Song, Tae-Kwang;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.411-418
    • /
    • 2008
  • In this work, the effect of strength mismatch on plastic limit loads is quantified for similar metal weld plates with cracks under tension load, via three-dimensional, small strain elastic-perfectly plastic finite element analyses. Relevant variables related to plate geometry and crack length are systematically varied, in addition to the weld width. An important finding is that mis-match limit loads can be uniquely quantified through strength mis-match ratio and one geometry-related parameter. Based on the proposed limit load solutions, reference stress based J-integral estimates is also investigated. When the reference stress is defined by the mis-match limit load, predicted J-integral values agree overall well with FE results.

Liquid and Plastic Limits of Cohesive Soil by Static and Dynamic Test Methods and Testers (정적 및 동적시험법과 실험자에 따른 점토의 액·소성한계)

  • Kim, Chan-Kee;Yeo, Jin-Soo;Moon, Young-Seog;Park, Hyung-Yeol;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.5-15
    • /
    • 2017
  • In this study, the liquid and plastic limit tests were conducted on Paju clay with Casagarande method (dynamic) and the fall cone test method (static) to find out the effects of test methods and testers on their values. Six testers, who already have the experience of test, participated. As a results of liquid limit tests, the fall cone test method showed 4% smaller liquid limit compared to the value determined by Casagrande method. As the number of tests increased, the fall cone test method showed less variation between testers and the variation range of level of proficiency was also more stable. In the case of one point method, the liquid limit determined by the fall cone test method varied with smaller range compared to the Casagrande. Consequently, the fall cone test provided more stable liquid limit value than that of Casagrande method. For the results of plastic limit tests, there were no difference between Casagrande method and the fall cone test unlike liquid limit test results. In other words, both methods showed that plastic limit reached the average value as the number of tests increased, and the tendency level of proficiency also showed to get better.

Analysis of Plastic Hinge of Pile-Bent Structure with Varying Pile Diameters (단일형 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.349-356
    • /
    • 2010
  • In this study, a new design method of pile bent structure considering plastic hinge was proposed on the basis of the beam-column model. Based on the analysis results, it is found that the positioning of plastic hinge on the pile bent structure was influenced by nonlinear behavior of material and p-$\Delta$ effect. Moreover, concrete cracking began to occur at the joint section between the pile and column in case of pile bent structure with different cross-sections. The plastic hinge can be developed on the pile bent structure when large displacement was occurred, and pile bent structures can be maintained well only if it is developed on the column part. Therefore, in this study, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Based on this, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio($D_c/D_p$) and normalized lateral cracking load ratio($F/F_{Dc=Dp}$). And through this study, it is founded that in-depth limit($L_{As}$=0.4%) normalized by the pile length($L_P$) are proportionally decreased as the pile length($L_P/D_P$) increases up to $L_P/D_P$=17.5, and beyond that in-depth limit converges to a constant value. Finally, it is found that the proposed limit depth by taking into account the minimum concrete-steel ratio would be more economical design of the pile bent structure.

  • PDF

New Plastic Limit Load Equations of Pipes with Inner and Outer Circumferential Surface Cracks Considering Thickness Effect (내부 및 외부 원주방향 표면균열이 존재하는 배관의 두께효과를 고려한 소성한계하중 계산식 제시)

  • Kim, Yeon-Soo;Huh, Nam-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • In this study, limit load equations of thick-walled pipes with inner and outer circumferential surface cracks were derived based on force and moment equilibrium conditions. Since the limit load equations based on the mean radius at uncracked ligament, previously proposed by Kanninen et al., are based on the premise that the pipe wall thickness is relatively thin, the existing limit load solutions are only applicable to thin-walled pipes. In order to analyze the effect of the pipe thickness and surface crack depth on the limit load results, the predictions using the present limit load equations are compared with those using the existing solutions for thin-walled pipes. Being derived considering the thickness effect, the limit load solutions from this paper are believed to be more accurate for thick-walled pipes than the limit load equations presented for thin-walled pipes, and thus to be valuable equations for integrity assessment of thick-walled pipes.

Limit load analyses of weld-center cracked plates under tension (용접부 중앙에 균열이 존재하는 인장 평판에 대한 한계하중 해석)

  • Song, Tae-Kwang;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1830-1835
    • /
    • 2007
  • In the present work, the effect of strength mismatch on plastic limit loads is quantified for strength-mismatched plates with constant-depth surface cracks under tension, via three-dimensional, small strain elastic-perfectly plastic finite element analyses. Relevant variables related to plate and crack geometries are systematically varied, in addition to the weld width. An important finding is that a parameter related to the weld width-to-ligament ratio is proposed, based on which limit loads can be uniquely quantified. The proposed limit load solutions is a valuable input to estimate nonlinear fracture mechanics parameters based on the reference stress approach.

  • PDF

A Study on the Compaction and Consistency of Soil (흙의 다짐과 Consistency에 관한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4251-4258
    • /
    • 1976
  • In the construction of earth dam, embankment and highway by filling, a compaction contributes to increasing the density of soil by applying pressure. The effect of compaction depends on various factors such as soil type, moisture content, gradation, consistency, and compaction energy. In this study, the correlations amone maximum dry density, moisture content, dry density, and moisture content are analyzed. Some results obtained in this study are summarizep as follows. 1. The maximum dry density sinoreases with increased of optimum moisture content and the correlations of them can be represented by; ${\gamma}$dmx=a-b(W0) 2. Maximum dry density and liquid limit show negative linear correlation and can be represented by; ${\gamma}$dmx=a-b(LL). 3. Optimum moisture content and liquid limit, plastic limit show positive linear correlation and can be represented by the following equation, W0=a+b(LL) W0=a+b(PL). 4. Liquid limit and plastic limit show positive linear correlation, and can be represented by the following equation, LL=a+b(PL).

  • PDF

Estimation of fully plastic crack tip stresses of unequally notched specimen under bending and tension (굽힘 모멘트와 인장 하중이 작용하는 비대칭 노치 시편의 완전 소성 균열 선단 응력의 예측)

  • Oh, Chang-Kyun;Kim, Yun-Jae;Park, Jin-Moo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.37-42
    • /
    • 2004
  • This paper presents a simple method to estimate fully plastic crack tip stresses of unequally notched specimen based on the equilibrium condition of the least upper bounds for plane strain deformation fields. The method is applied to unequally notched specimens under bending and tension. For various notch angle the limit loads and crack tip stresses are estimated from the present method and compared with results from finite element limit analyses.

  • PDF

Studies on the Engineering Characteristics of Alluvial Clayey Deposits in the Bay Area of Asan (II) (아산만지역 충적점토의 토질특성에 관한 연구(II))

  • 유능환;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.55-66
    • /
    • 1988
  • This study was conducted to investigate the various engineering properties and correlationshops among the soil constants of alluvial clayey deposits distributed in the bay of Asan and their results are summarized as follows : 1. Grain size distribution of soil was consisted of 12 % of clay, 46-73 % of silt, 2-23 % of sand, and as for the consistency characteristics, 26-36 % of liquid limit, 18-21 % of plastic limit and 6-16 % of plastic index, and so the soil belonging to as a lower plastic nonorganic clay, it's specific gravity was 2,66-2.70, and the location on the plastic chart was approximately above the A-line. Z The natural moisture content and unit weight were 30-43 % and 1.76-1.87 g I cm$_3$, respectively, and according to increment of natural moisture content, the unit weight was decreased, and the initial void ratio and degree of saturation were shown of 0,87-1119 and 92- 100 %, most of saturated. 3. Cone resistance value which was shown 2.4 - 6.5 kg / $cm^2$ was a little lower and it was increased with the depth of layer and shown the formular $q_c=0.7_z+1.32$. 4. Unconfined compression strength was about 0.18-0.43kg /$cm^2$, cu, 0.1-0.22kg / $\psi$, $2-6^{\circ}$ under uu-test condition of triaxial, and CCU, 0.08-0.3 kg/cm , $\psi$, $12-18^{\circ}$ under the condition of cu-test. 5. Pre-consolidation load of characteristics of consolidation was 0.4-0.8 kg / $cm^2$, compression index, about 0.17-0.33. 6. Liquid limit and plastic index were incresased with the increment of clay content but most of alluvial clay was appeared as a normal through non-activity clay soil shown more natural moisture content than liquid limit, and their relationship as follows : LL=0.38( cy+54.8), PI=0.836(LL -17.8), PI =0.468(LL -0.48) 7. The initial void ratio presented correlationship of positive among clay content, natural moisture content and liquid limit, and that of reverse with unit weight, and their results as follws : $e_o=0.024(w_n+0.2)$, $e_o=e_o=0.0003c_y+0.0005 LL+0.0151 W_n+\frac{3.58}{r-t}-1.52$ 8. It was shown that the compression index has correlationship of postive among the clay content, liquid limit, plastic index, natural moisture content and initial void ratio, and their relationships as follows ; $c_c=0.44(e_o-0.47)$, $c_c=0.001$

  • PDF

Limit Load Solutions for Piping Branch Junctions with local wall-thinning under Internal Pressure (감육이 존재하고 내압을 받는 T 분기관의 한계하중 평가식)

  • Ryu, Kang-Mook;Kim, Yun-Jae;Lee, Kuk-Hee;Park, Chi-Yong;Lee, Sung-Ho;Kim, Tae-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1813-1817
    • /
    • 2007
  • The present work presents plastic limit load solutions for piping branch junctions with local wall-thinning, based on detailed three-dimensional (3-D) and small strain FE limit analyses using elastic-perfectly plastic materials. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. The wall-tinning located on variable area of the piping branch junction is considered. A wide range of piping branch junction and wall-thinning geometries are considered. Comparison of the proposed solutions with FE results shows good agreement

  • PDF

A Prediction of Bursting Failure in Tube Hydroforming Process Based on Plastic Instability (소성불안정성에 의한 관재 하이드로포밍 공정에서의 터짐 불량 예측)

  • Kim S. W.;Kim J.;Park H. J.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.210-213
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined internal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity fur anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy parameter, strain hardening exponent on bursting pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

  • PDF