• Title/Summary/Keyword: plastic kinematic모델

Search Result 22, Processing Time 0.016 seconds

Non-Local Plasticity Constitutive Relation for Particulate Composite Material Using Combined Back-Stress Model and Shear Band Formation (비국부 이론을 이용한 입자 강화 복합재 이중후방응력 소성 구성방정식 모델 및 전단밴드 분석)

  • Yun, Su-Jin;Kim, Shin Hoe;Park, Jae-Beom;Jung, Gyoo Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1057-1068
    • /
    • 2014
  • This paper proposes elastic-plastic constitutive relations for a composite material with two phases-inclusion and matrix phases-using a homogenization scheme. A thermodynamic framework is employed to develop non-local plasticity constitutive relations, which are specifically represented in terms of the second-order gradient terms of the internal state variables. A combined two back-stress evolution equation is also established and the degradation of the state and internal variables is expressed by continuum damage mechanics in terms of the damage factor. Then, deformation localization is analyzed; the analysis results show that the proposed model yields a wide range of shear band formation behaviors depending on the evolution of the specific internal state variables. The analysis results also show good agreement with the results of simplified Rice instability analyses.

Implicit Numerical Integration of Two-surface Plasticity Model for Coarse-grained Soils (Implicit 수치적분 방법을 이용한 조립토에 관한 구성방정식의 수행)

  • Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.45-59
    • /
    • 2006
  • The successful performance of any numerical geotechnical simulation depends on the accuracy and efficiency of the numerical implementation of constitutive model used to simulate the stress-strain (constitutive) response of the soil. The corner stone of the numerical implementation of constitutive models is the numerical integration of the incremental form of soil-plasticity constitutive equations over a discrete sequence of time steps. In this paper a well known two-surface soil plasticity model is implemented using a generalized implicit return mapping algorithm to arbitrary convex yield surfaces referred to as the Closest-Point-Projection method (CPPM). The two-surface model describes the nonlinear behavior of coarse-grained materials by incorporating a bounding surface concept together with isotropic and kinematic hardening as well as fabric formulation to account for the effect of fabric formation on the unloading response. In the course of investigating the performance of the CPPM integration method, it is proven that the algorithm is an accurate, robust, and efficient integration technique useful in finite element contexts. It is also shown that the algorithm produces a consistent tangent operator $\frac{d\sigma}{d\varepsilon}$ during the iterative process with quadratic convergence rate of the global iteration process.