• 제목/요약/키워드: plastic fine

Search Result 281, Processing Time 0.023 seconds

플라스틱 잔골재에 의한 시멘트 모르타르 기초 물성 평가 (Characterization of Cement Mortar with Plastic Fine Aggregates)

  • 이준;김경민;조영근;김호규;김영욱
    • 한국건설순환자원학회논문집
    • /
    • 제7권4호
    • /
    • pp.383-388
    • /
    • 2019
  • 본 연구는 폐플라스틱 중 저급의 복합재질 필름류 포장재를 콘크리트 원재료로 활용하기 위한 기초 연구로, LLDPE 및 HDPE의 2종의 플라스틱으로 제작된 잔골재를 사용하여 혼입률을 0, 25, 50, 75, 100%로 증가시키면서 플라스틱 잔골재의 종류 및 혼입률이 모르타르에 미치는 영향에 대하여 실험적으로 평가하였다. LLDPE 잔골재 및 HDPE 잔골재 혼입 모르타르는 유동성 및 재료분리저항성, 밀도 및 흡수율, 재령별 압축강도 및 휨강도에서 유사한 경향을 나타내었다. 플라스틱 잔골재를 혼입하지 않은 모르타르 대비 플라스틱 잔골재 혼입 모르타르의 유동성은 혼입률 50% 까지는 증가하다가 혼입률 75% 이상에서는 감소하였으며, 플라스틱 잔골재의 혼입에 따라 모르타르의 재료분리저항성은 급격하게 증가하였다. 한편, 플라스틱 잔골재의 낮은 밀도로 플라스틱 잔골재 혼입에 따라 모르타르의 밀도는 감소하였으며, 플라스틱 잔골재와 시멘트 사이의 낮은 부착력으로 인하여, 플라스틱 잔골재 혼입에 따라 재령별 압축강도는 플라스틱 잔골재 혼입률에 비례하여 감소하였으나. 재령별 휨강도는 플라스틱 잔골재 혼입률 50% 이상에서 일정 수준을 유지하며 감소하는 것으로 나타났다.

An Environment-Friendly Surface Pretreatment of ABS Plastic for Electroless Plating Using Chemical Foaming Agents

  • Kang, Dong-Ho;Choi, Jin-Chul;Choi, Jin-Moon;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권4호
    • /
    • pp.174-177
    • /
    • 2010
  • We have developed an environment-friendly etching process, an alternative to the dichromic acid etching process, as a pretreatment of acrylonitrile-butadiene-styrene (ABS) plastic for electroless plating. In order to plate ABS plastic in an electroless way, there should be fine holes on the surface of the ABS plastic to enhance mechanically the adhesion strength between the plastic surface and the plate. To make these holes, the surface was coated uniformly with dispersed chemical foaming agents in a mixture of environmentally friendly dispersant and solvent by the methods of dipping or direct application. The solvent seeps into just below the surface and distributes the chemical foaming agents uniformly beneath the surface. After drying off the surface, the surface was heated at a temperature well below the glass transition temperature of ABS plastic. By pyrolysis, the chemical foaming agents made fine holes on the surface. In order to discover optimum conditions for the formation of fine holes, the mixing ratio of the solvent, the dispersant and the chemical foaming agent were controlled. After the etching process, the surface was plated with nickel. We tested the adhesion strength between the ABS plastic and nickel plate by the cross-cutting method. The surface morphologies of the ABS plastic before and after the etching process were observed by means of a scanning electron microscope.

Influence of plastic viscosity of mix on Self-Compacting Concrete with river and crushed sand

  • Rama, J.S. Kalyana;Sivakumar, M.V.N.;Kubair, K. Sai;Vasan, A.
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.37-47
    • /
    • 2019
  • In view of the increasing utility of concrete as a construction material, the major challenge is to improve the quality of construction. Nowadays the common problem faced by many of the concrete plants is the shortage of river sand as fine aggregate material. This led to the utilization of locally available materials from quarries as fine aggregate. With the percentage of fines present in Crushed Rock Fines (CRF)or crushed sand is more compared to river sand, it shows a better performance in terms of fresh properties. The present study deals with the formulation of SCC mix design based on the chosen plastic viscosity of the mix and the measured plastic viscosity of cement pastes incorporating supplementary cementitious materials with CRF and river sand as a fine aggregate. Four different combinations including two binary and one ternary mix are adopted for the current study. Influence of plastic viscosity of the mix on the fresh and hardened properties are investigated for SCC mixes with varying water to cement ratios. It is observed that for an increasing plastic viscosity of the mix, slump flow, T500 and J-ring spread increased but V-funnel and L-box decreased. Compressive, split tensile and flexural strengths decreased with the increase in plastic viscosity.

변분적 다중 스케일 방법을 이용한 탄소성 변형의 무요소해석 (Meshfree Analysis of Elasto-Plastic Deformation Using Variational Multiscale Method)

  • 연정흠;윤성기
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1196-1202
    • /
    • 2004
  • A meshfree multi-scale method has been presented for efficient analysis of elasto-plastic problems. From the variational principle, problem is decomposed into a fine scale and a coarse scale problem. In the analysis only the plastic region is discretized using fine scale. Each scale variable is approximated using meshfree method. Adaptivity can easily and nicely be implemented in meshree method. As a method of increasing resolution, partition of unity based extrinsic enrichment is used. Each scale problem is solved iteratively. Iteration procedure is indispensable for the elasto-plastic deformation analysis. Therefore this kind of solution procedure is adequate to that problem. The proposed method is applied to Prandtl's punch test and shear band problem. The results are compared with those of other methods and the validity of the proposed method is demonstrated.

폐견사류의 미세분말화 및 표면 가공제 적용 (Preparation of Fine Silk Powder and It′s Application for Surface Modification)

  • 이용우;이광길;여주홍;김종호
    • 한국잠사곤충학회지
    • /
    • 제43권1호
    • /
    • pp.41-48
    • /
    • 2001
  • The purification, dissolution and powdering of stained waste silk obtained from weaving and dyeing process were studied for the surface modification of textile fabric and plastic materials. The whiteness of stained waste silk could be improved through degumming and bleaching with sodium hydrosulfite. The water-soluble fibroin solution can be obtained by dissoving the degummed waste silk in a boiling solution of 50% calcium chloride for 60 minutes. The salts and heavy metals contained in fibroin solution were removed by electric dialysis, wool fiber filtration and gel filtration chromatography. The fibroin powder was prepared by using a fine grinder after the alkali treatment for weakening the silk fiber. The fine fibroin powder of particle size around 30 ㎛ was obtained with a ultra fine-mill, while it was finer below 10 ㎛ with a ball-mill. The dissolved or powdered silk was applied to the surface of fabric with addition of the binder (a urethane resin). The moisture content of polyester and nylon fabrics treated with the silk solution was improved due to hygroscopic property of silk. The fine fibroin powder mixed with the binder ws coated on the surface of synthetic film by use of the air pressed sprayer. It was revealed that the hygroscopicity as well as the softness of fibroin powder coated film was much improved. Therefore, it is thought that the fine silk fibroin powder is applicable as an coating agent for the surface modification of plastic and synthetic leather.

  • PDF

강소성법을 이용한 미세립 Al-5083 합금의 피로균열전파 거동 (Fatigue Crack Propagation Behavior of Fine Grained Al-5083 Alloy Produced by Severe Plastic Deformation)

  • 김호경;양경탁;김현준
    • 한국안전학회지
    • /
    • 제22권2호
    • /
    • pp.15-21
    • /
    • 2007
  • Fine grained Al-5083 alloy produced by equal channel angular pressing (ECAP) at $120^{\circ}C$ was tested for investigating mechanical properties and crack growth propagation behavior. Also, FEM stress and strain analysis for the samples during ECAP were investigated, using a plastic deformation analysis software DEFORM 2-D. Coarse grained as-received samples exhibited UTS of 255.6MPa with a elongation to failure of 34.4%. By contrast, the ECAPed fine grained samples exhibited UTS of 362.0MPa with a elongation to failure of 12.9%. Fatigue crack growth resistance and threshold of fine grained samples were lower than that of as-received coarse grained samples. The higher fatigue crack growth rate in the fine grained ECAPed samples may partially arise from small roughness closure effect due to smoother fracture surfaces.

Unconfined compressive strength of PET waste-mixed residual soils

  • Zhao, Jian-Jun;Lee, Min-Lee;Lim, Siong-Kang;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • 제8권1호
    • /
    • pp.53-66
    • /
    • 2015
  • Plastic wastes, particularly polyethylene terephthalate (PET) generated from used bottled water constitute a worldwide environmental issue. Reusing the PET waste for geotechnical applications not only reduces environmental burdens of handling the waste, but also improves inherent engineering properties of soil. This paper investigated factors affecting shear strength improvement of PET-mixed residual soil. Four variables were considered: (i) plastic content; (ii) plastic slenderness ratio; (iii) plastic size; and (iv) soil particle size. A series of unconfined compression tests were performed to determine the optimum configurations for promoting the shear strength improvement. The results showed that the optimum slenderness ratio and PET content for shear strength improvement were 1:3 and 1.5%, respectively. Large PET pieces (i.e., $1.0cm^2$) were favorable for fine-grained residual soil, while small PET pieces (i.e., $0.5cm^2$) were favorable for coarse-grained residual soil. Higher shear strength improvement was obtained for PET-mixed coarse-grained residual soil (148%) than fine-grained residual soils (117%). The orientation of plastic pieces in soil and frictional resistance developed between soil particles and PET surface are two important factors affecting the shear strength performance of PET-mixed soil.

무기충진재를 혼입한 복합 폐플라스틱 골재를 활용한 콘크리트 압축강도 특성 (Compressive Strength Evaluation of Concrete with Mixed Plastic Waste Aggregates Filled with Blast Furnace Slag Fine Powder)

  • 이준;김경민;조영근;김호규;김영욱
    • 한국건설순환자원학회논문집
    • /
    • 제9권3호
    • /
    • pp.253-259
    • /
    • 2021
  • 플라스틱은 소비량 증가에 따라 생활계폐기물 중 폐플라스틱의 발생량도 급격히 증가하고 있으나, 분리, 선별 공정 비용 증가 등으로 재활용은 저조한 실정이다. 이에 본 연구는 생활계폐기물 발생 복합재질 폐플라스틱을 콘크리트용 골재로 재활용하기 위한 기초 연구로 고로슬래그 미분말을 충진한 복합재질 폐플라스틱 잔골재 및 굵은골재의 투입 비율 및 투입량이 콘크리트의 슬럼프 및 압축강도에 미치는 영향을 실험적으로 평가하였다. 복합재질 폐플라스틱 굵은골재는 부순 굵은골재 대비 조립률은 유사하나, 입자 크기가 작은 단입도 분포인 반면에, 복합재질 폐플라스틱 잔골재는 부순 잔골재 대비 조립률 및 입자 크기가 큰 단입도 분포인 것으로 나타났으며, 고로슬래그 미분말에 의한 밀도 및 공극 충진에 의한 흡수율 향상 효과는 복합재질 굵은골재 대비 복합재질 잔골재가 큰 것으로 나타났다. 복합재질 폐플라스틱 골재의 투입량이 증가할수록 콘크리트의 슬럼프와 압축강도는 감소하였다. 특히, 동일한 양의 복합재질 폐플라스틱 골재 투입 수준에서 복합재질 폐플라스틱 잔골재의 투입량이 많을수록 슬럼프와 압축강도는 작아지는 것으로 나타났으며, 이는 복합재질 폐플라스틱 잔골재 중 ROD 형상의 골재 하부에 공기가 갇히면서 형성된 공극에 의한 것으로 판단된다. 한편, 혼화제 투입 및 단위 시멘트량 증대는 복합재질 폐플라스틱 골재 투입 콘크리트의 압축강도 향상에는 효과가 있는 것으로 나타났다.

Effect of Wood Particle Size on Physical and Mechanical Composites by Nonwoven Web Process

  • Chae, Shoo Geun;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권2호통권130호
    • /
    • pp.40-55
    • /
    • 2005
  • This study was carried out to discuss the feasibility of wood and plastic wastes as the raw materials for wood particle-plastic composites. For this purpose, composites were manufactured from coarse and fine wood particles and polypropylene fibers by nonwoven web process. And the effect of wood particle size on the performance of the composites were analyzed according to ASTM D 1037-93. In the physical properties of composites, water absorption decreased with the increase of target density and polypropylene fiber content. And the composites with fine wood particles appeared to have slightly lower water absorption than those with coarse wood particles. Thickness swelling did not vary significantly with the increase of target density but increased with the increase of wood particle content. And the composites with fine wood particles were significantly lower in thickness swelling than those with coarse wood particles. In the mechanical properties of composites, dry and wet MOR showed the increasing tendency with the increase of polypropylene fiber content and target density. Dry and wet MOE showed the increasing tendency with the increase of target density but only wet MOE exhibited the increasing tendency with the increase of polypropylene fiber content. Composites with fine wood particles appeared to be generally higher in wet MOR and MOE than those with coarse wood particles. In conclusion, composites with fine wood particles showed generally higher performance than those with coarse ones. Also, composites were significantly superior to control particleboards in the performance, especially in water absorption and thickness swelling.

구름 베어링 부품의 소성가공 (Plastic Forming of Rolling Bearing Steel Components)

  • 송복한;박창남
    • 소성∙가공
    • /
    • 제12권2호
    • /
    • pp.83-87
    • /
    • 2003
  • Current state of plastic processes of steel bearing parts is surveyed. According to the advances in plastic forming technologies and their great advantage to mass production, plastic processes are adopted in manufacturing majority of bering parts. The rings are forged or ring rolled and the rolling elements, i.e, balls or rollers are cold formed before fine machining. Bearing's steel retainers are mainly press formed using cold rolled seel strips. Including the general explanation about above processes, some details of forging technology, control of forging temperature and after cooling process, and examples of computer simulation are described.