• Title/Summary/Keyword: plastic filter

Search Result 92, Processing Time 0.025 seconds

Improvement of Organics and Nitrogen Removal by HRT and Recycling Rate in Air Lift Reactors (공기부상반응조에서 체류시간과 반송율에 의한 유기물질 및 질소제거 향상에 관한 연구)

  • Kim, Jin-Ki;Yu, Sung-Whan;Lim, Bong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • This study was performed to evaluate the air lift reactors (ALR) by variations of HRT and recycling rate. Air lift reactor was composed of bioreactor and clarifier above it. To remove organic matters and nitrogen through the formation of microbic film and filtration, bio-filter reactors were filled with clay, glass, bead, waste plastic, respectively. Influent wastewater was fed to biofilter reactor, and effluent wastewater from bio-filter reactor was injected ALR again, instead of adding external carbon source. Effluent BOD concentration was satisfied with lower than 10 mg/L in recycling rate 100% regardless of the variation of HRT and the kinds of media materials. In HRT 4 hr, recycling rate 100%, BOD removal efficiency rate was from about 85 to 90%, COD removal efficiency rate was higher than 90%. Effluent TN concentration was satisfied with less than 20 mg/L, if HRT was maintained by over than 6 hr regardless of recycling rate and media materials. Over than HRT was 4 hr, microbes concentration in air lift reactor was maintained over than 2,500 mg/L constantly, not sensitive to environmental condition, and organic removal was effective as it was higher.

Comparison of Environmental Evaluation for Paper and Plastic Based Mask Packaging (종이 기반과 플라스틱 기반 보건마스크 패키징의 환경영향 비교)

  • Dongho Kang;Youjin Go;Sanghoon Oh;Gohyun Choo;Jisoo Jang;Junhyuk Lee;Jinkie Shim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.73-83
    • /
    • 2024
  • In this study, environmental evaluation of high barrier coated paper (coating layer/paper) packaging is conducted in comparison with conventional aluminum laminated (PET/VMPET/LLDPE) plastic packaging. The target product for this packaging is a KF94 mask, which requires a high barrier of water and oxygen to maintain the filtration ability of the mask filter. The functional unit of this study is 10,000 mask packaging materials based on a material capable of blocking oxygen (<1 g/m2day) and moisture (<3 g/m2day) for the preservation of KF94 masks. In order to understand the results easily, paper-based mask packaging system divided into 6 stages (pulp, pulping & paper making, calendaring & coating, printing, packing and waste management), while plastic-based mask packaging consists of 5 stages (material production, processing, printing, packing, waste management) In case of paper-based mask packaging, most contributing stage is calendaring & coating, resulting from heat and electricity production. On the other hand, plastic-based mask packaging is contributed more than 30% by material production, specifically due to linear low density polyethylene and purified terephthalic acid production. The comparison results show that global warming potential of paper-based mask packaging has 32% lower than that of plastic-based mask packaging. Most of other impact indicators revealed in similar trend.

Fabrication of Nano-filter Device for High Efficient Separation and Concentration of Biomolecules (고효율 바이오물질 분리 및 농축을 위한 나노필터소자제작)

  • Huh, Yun Suk;Choi, Bong Gill;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.738-742
    • /
    • 2012
  • Here, we develop a new nanofilter device for the rapid and efficient separation of nanoparticles and biomolecules, exploiting the use of AAO mebrane with ordered nanopores in the range from 20 nm to 200 nm. Briefly, the chip comprises of a series of the upper and lower PDMS channels containing embedded inlet and outlet ports, and $50{\mu}m$ width microfluidic channel, and AAO membrane to be made the filtering zone. After assembling these components, the acrylate plastic plates were used to fix the device on the top and bottom side. When introducing the samples into the inlet ports of the upper PDMS channel, we were able to separate and concentrate the nanoparticles and target molecules at the filtering zone, and to elute the solutions containing the unwanted materials toward the lower PDMS channels normal to the direction of AAO membrane. To demonstrate the usefulness of the device we apply it to the SERS detection of nucleic acid sequences associated with Dengue virus serotype 2. We report a limit of detection for Dengue sequences of 300 nM and show excellent enhancement of Raman signals from the filter zone of the nanofilter device.

Residual Vibration Control of High Speed Take-out Robot Used for Handling of Injection Mold Plastic Part (고속운동 플라스틱 금형사출 부품 취출 로봇의 잔류진동 제어)

  • Rhim, Sung-Soo;Park, Joo-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1025-1031
    • /
    • 2011
  • Take-out robots used for handling of the plastic parts manufactured with the injection mold are usually the gantry type that consists of long and thin links, The performance of the take-out robot is determined by the speed of the motion and the positioning accuracy to grab the part out of the mold, As the speed of the robot increases the flexure in the links of the take-out robot becomes more significant and it results in more residual vibration, The residual vibration deteriorates the positioning accuracy and compels the operator to slow down the motion of the robot. The typical method to reduce the vibration in the robot requires stiffening the links and/or slowing down the robot, Vibration control could achieve the desired performance without increasing the manufacturing cost or the operation cost that would be incurred otherwise, Considering the point-to-point nature of the task to be performed by the take-out robot the time-delay command (or input) shaping filter approach would be the most effective control method to be adopted among a few available control schemes. In this paper a direct adaptive command shaping filter (ACSF) algorithm has been modified and applied to design the optimal command shaping filters for various configuration of the take-out robot. Optimal filters designed by ACSF algorithm have been implemented on a take-out robot and the effectiveness of the designed filters in terms of vibration suppression has been verified for multiple positions of the robot.

Impact of Media Type and Various Operating Parameters on Nitrification in Polishing Biological Aerated Filters

  • Ha, Jeong-Hyub;Ong, Say-Kee;Surampalli, R.
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.79-84
    • /
    • 2010
  • Three biological aerated filters (BAFs) composed of a PVC pipe with a diameter of 75 mm were constructed and operated at a waste-water temperature at $13^{\circ}C$. The media used for each BAF were: 5-mm gravel; 5-mm lava rock; 12.5-mm diameter by 15-mm long plastic rings, all with a media depth of 1.7 m. The feedwater, which simulated the effluent of aerated lagoons, had influent soluble chemical oxygen demand (sCOD) and ammonia concentrations of approximately 50 and 25 mg/L, respectively. For a hydraulic retention time (HRT) of two hours without recirculation, ammonia percent removals were 98.5, 98.9, and 97.8%, for the gravel, lava rock, and plastic rings, respectively. By increasing the effluent recirculation from 100 to 200% for an HRT of one hour, respective ammonia removals improved from 90.1 to 96, 76.5 to 90, and 65.3 to 79.5% for gravel, lava rock, and plastic rings. Based on the ammonia and sCOD loadings for different HRTs, the estimated maximum ammonia loading was approximately 0.6 kg $NH_3-N/m^3$-day for the three BAFs of different media types. The zero-order biotransformation rates for the BAF with gravel were found to be higher than the lava rock and plastic ring media. The results ultimately showed that BAF can be used as an add-on system to aerated lagoons or as a secondary treatment unit to meet ammonia discharge limits.

Improved adsorption performance of heavy metals by surface modification of polypropylene/polyethylene media through oxygen plasma and acrylic acid

  • Hong, Jeongmin;Lee, Seungwoo;Ko, Dongah;Gwon, Eunmi;Hwang, Yuhoon
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.231-235
    • /
    • 2020
  • Industrialization and modern developments have led to an influx of toxic heavy metals into the aquatic environment, and the accumulation of heavy metals has serious adverse effects on humans. Among the various heavy metal treatment methods, adsorption is very useful and frequently used. Plastic materials, such as polypropylene and polyethylene, have been widely used as filter media due to their mechanical and chemical stability. However, the surface of plastic material is inert and therefore the adsorption capability of heavy metals is very limited. In this study, granular media and fiber media composed of polypropylene and polyethylene are used, and the surface modification was conducted in order to increase adsorption capability toward heavy metals. Oxygen plasma generated hydroxyl groups on the surface of the media to activate the surface, and then acrylic acid was synthesized on the surface. The grafted carboxyl group was confirmed by FT-IR and SEM. Heavy metal adsorption capability of pristine and surface modified adsorbents was also evaluated. Overall, heavy metal adsorption capability was increased by surface modification due to electrostatic interaction between the carboxyl groups and heavy metal ions. Fibrous PP/PE showed lower improvement compared to granular PP media because pore blockage occurred by the surface modification step, thereby inhibiting mass transfer.

Evaluation on Drainage Capacity of Cylindrical Drain with Different Core Shapes (코아형식에 따른 원통형 배수재의 구멍막힘에 의한 배수능력 평가비교)

  • Lee Kwang-Yeol;Nugroho David Setiawan;Yun Sung-Tae;Ji Ho-Yeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.311-315
    • /
    • 2006
  • Various core shapes of cylindrical drains are used for accelerating primary consolidation for soft clay deposits, but serious harmful disadvantages on drainage capacity may occur on cylindrical drains due to confining Pressure when they are installed in that soil. In this study, two different core shapes of cylindrical drain are used to evaluate the drainage capacity with consideration of clogging effects on their filter jackets for an applied confining pressure. Column tests with radial drainage system were conducted under confining pressure of 50 kPa for 13 days. Two parameters which are discharge and accumulated volume of water drained were measured as the time elapsing. From this experimental study, the results showed that at the Initial stage before the clogging developed enough, the cylindrical drain with angular-type-plastic-core could produce discharge twice higher (maximum) than those with round-type. After 13 days had passed on, cylindrical drain with angular-type-plastic-core could produce discharge only 20% higher than those with round-type one. Eventually, there is a possibility that the efficiency of using angular-type-cylindrical-drain will be similar to the round-type one as the clogging develops more.

  • PDF

A Perfomance Evaluation of the Deformation-Compatible Vertical Drain (DCVD 배수재의 성능평가)

  • Song, Seok-Kyu;Chun, Youn-Chul;Shim, Jai-Beom;Shim, Seong-Hyeon;Kim, Young-Uk;Lee, Seok-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.692-701
    • /
    • 2009
  • The use of vertical drain method to improve the soft soil ground has been continuously increased in Korea such as Busan New Port, Saemangeum reclamation project and so on in Korea. Especially PBD(Plastic Board Drain), one of the vertical drain, has been widely used due to the economic feasibility, construction compatibility and quality control. However in case of using PBD, discharge capacity reduction caused by creep deformation of the PBD filter, bending, kinking and so on can be occurred. Therefore the purpose of this study is to solve these problems by developing Deformation-Compatible Vertical Drain, DCVD which allows to deform with consolidation settlement without bending and kinking of vertical drain. In order to investigate the performance of DCVD developed in this study, discharge capacity test, centrifuge model test and complex discharge capacity test for both PBD and DCVD are performed and the results are compared.

  • PDF

Feasibility study on fiber-optic inorganic scintillator array sensor system for multi-dimensional scanning of radioactive waste

  • Jae Hyung Park;Siwon Song;Seunghyeon Kim;Jinhong Kim;Seunghyun Cho;Cheol Ho Pyeon;Bongsoo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3206-3212
    • /
    • 2023
  • We developed a miniaturized multi-dimensional radiation sensor system consisting of an inorganic scintillator array and plastic optical fibers. This system can be applied to remotely obtain the radioactivity distribution and identify the radionuclides in radioactive waste by utilizing a scanning method. Variation in scintillation light was measured in two-dimensional regions of interest and then converted into radioactivity distribution images. Outliers present in the images were removed by using a digital filter to make the hot spot location more accurate and cubic interpolation was applied to make the images smoother and clearer. Next, gamma-ray spectroscopy was performed to identify the radionuclides, and three-dimensional volume scanning was also performed to effectively find the hot spot using the proposed array sensor.

The Theory and Application of Diffusive Gradient in Thin Film Probe for the Evaluation of Concentration and Bioavailability of Inorganic Contaminants in Aquatic Environments (박막분산탐침(diffusive gradient in thin film probe)의 수중 생물학적 이용가능한 중금속 측정 적용)

  • Hong, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.691-702
    • /
    • 2013
  • This review paper summarizes the theory, application, and potential drawbacks of diffusive gradient in thin film (DGT) probe which is a widely used in-situ passive sampling technique for monitoring inorganic contaminants in aquatic environments. The DGT probe employs a series of layers including a filter membrane, a diffusive hydrogel, and an ionic exchange resin gel in a plastic unit. The filter side is exposed to an aquatic environment after which dissolved inorganic contaminants, such as heavy metals and nuclides, diffuse through the hydrogel and are accumulated in the resin gel. After retrieval, the contaminants in the resin gel are extracted by strong acid or base and the concentrations are determined by analytical instruments. Then aqueous concentrations of the inorganic contaminants can be estimated from a mathematical equation. The DGT has also been used to monitor nutrients, such as ${PO_4}^{3-}$, in lakes, streams, and estuaries, which might be helpful in assessing eutrophic potential in aquatic environments. DGT is a robust in-situ passive sampling techniques for investigating bioavailability, toxicity, and speciation of inorganic contaminants in aquatic environments, and can be an effective monitoring tool for risk assessment.