• Title/Summary/Keyword: plastic equivalent strain

Search Result 126, Processing Time 0.022 seconds

A Theoretical Comparison of Two Possible Shape Memory Processes in Shape Memory Alloy Reinforced Metal Matrix Composite

  • Lee Jae Kon;Kim Gi Dae
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1460-1468
    • /
    • 2005
  • Two possible shape memory processes, austenite to detwinned martensite transformation and twinned martensite to detwinned martensite transformation of a shape memory alloy have been modeled and examined. Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory is used for modeling of the shape memory processes of TiNi shape memory alloy reinforced aluminum matrix composite. The shape memory amount of shape memory alloy, plastic strain and residual stress in the matrix are computed and compared for the two processes. It is shown that the shape memory amount shows differences in a small prestrain region, but the plastic strain and the residual stress in the matrix show differences in the whole prestrain region. The shape memory process with initially martensitic state of the shape memory alloy would be favorable to the increase in the yield stress of the composite owing to the large compressive residual stress and plastic strain in the matrix.

Round robin analysis to investigate sensitivity of analysis results to finite element elastic-plastic analysis variables for nuclear safety class 1 components under severe seismic load

  • Kim, Jun-Young;Lee, Jong Min;Park, Jun Geun;Kim, Jong-Sung;Cho, Min Ki;Ahn, Sang Won;Koo, Gyeong-Hoi;Lee, Bong Hee;Huh, Nam-Su;Kim, Yun-Jae;Kim, Jong-In;Nam, Il-Kwun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.343-356
    • /
    • 2022
  • As a part of round robin analysis to develop a finite element elastic-plastic seismic analysis procedure for nuclear safety class 1 components, a series of parametric analyses was carried out on the simulated pressurizer surge line system model to investigate sensitivity of the analysis results to finite element analysis variables. The analysis on the surge line system model considered dynamic effect due to the seismic load corresponding to PGA 0.6 g and elastic-plastic material behavior based on the Chaboche combined hardening model. From the parametric analysis results, it was found that strains such as accumulated equivalent plastic strain and equivalent plastic strain are more sensitive to the analysis variables than von Mises effect stress. The parametric analysis results also identified that finite element density and ovalization option in the elbow elements have more significant effect on the analysis results than the other variables.

Analysis of Post Weld Deformation at HAZ by External Forces Based on Inherent Strain (고유변형도 기반 열변형부의 후속 하중에 기인한 용접 후 변형 해석)

  • Kim, Jong-Tae;Ha, Yun-Sok;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.220-227
    • /
    • 2006
  • In case of welding, the inherent strains are generated, because a structure experiences the plastic yielding. The inherent strain is defined as the irrecoverable strain after removing structural restraints and loading. For the analysis method of welding distortion, equivalent loading method based on inherent strain is in general use due to its efficiency and effectiveness. However, it is generally difficult to know the final strain of the welded structure if additional loadings were applied after welding. for this reason, this study introduced the concept of the hardening and added the hardening term to the equivalent loading method based on inherent strain. Therefore, the purposes of this study are to develop the inherent strain formula considering the hardening effect and to calculate residual Stresses Using Proposed inherent Strain. Also, this Study Verified the availability Of proposed inherent strain method by loading-unloading experiment on welded plate.

Preliminary Study on Effect of Baseline Correction in Acceleration Excitation Method on Finite Element Elastic-Plastic Time-History Seismic Analysis Results of Nuclear Safety Class I Components (원전 안전 1등급 기기의 유한요소 탄소성 시간이력 지진해석 결과에 미치는 가속도 가진 방법 내 기준선 조정의 영향에 대한 예비연구)

  • Kim, Jong-Sung;Park, Sang-Hyeok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • The paper presents preliminary investigation results for the effect of the baseline correction in the acceleration excitation method on finite element seismic analysis results (such as accumulated equivalent plastic strain, equivalent plastic strain considering cyclic plasticity, von Mises effective stress, etc) of nuclear safety Class I components. For investigation, finite element elastic-plastic time-history seismic analysis is performed for a surge line including a pressurizer lower head, a pressurizer surge nozzle, a surge piping, and a hot leg surge nozzle using the Chaboche hardening model. Analysis is performed for various seismic loading methods such as acceleration excitation methods with and without the baseline correction, and a displacement excitation method. Comparing finite element analysis results, the effect of the baseline correction is investigated. As a result of the investigation, it is identified that finite element analysis results using the three methods do not show significant difference.

Failure analysis of tubes under multiaxial proportional and non-proportional loading paths

  • Mohammad Hossein Iji;Ali Nayebi
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.289-296
    • /
    • 2023
  • The failure of a thin-walled tube was studied in this paper based on three failure models. Both proportional and non-proportional loading paths were applied. Proportional loading consisted of combined tension-torsion. Cyclic non-proportional loading was also applied. It was a circular out-of-phase axial-shear stress loading path. The third loading path was a combination of a constant internal pressure and a bending moment. The failure models under study were equivalent plastic strain, modified Mohr-Coulomb (Bai-Wierzbicki) and Tearing parameter models. The elasto-plastic analysis was conducted using J2 criterion and nonlinear kinematic hardening. The return mapping algorithm was employed to numerically solve the plastic flow relations. The effects of the hydrostatic stress on the plastic flow and the stress triaxiality parameter on the failure were discussed. Each failure model under study was utilized to predict failure. The failure loads obtained from each model were compared with each other. The equivalent plastic strain model was independent from the stress triaxiality parameter, and it predicted the highest failure load in the bending problem. The modified Mohr-Coulomb failure model predicted the lowest failure load for the range of the stress triaxiality parameter and Lode's angle.

Research of Residual Strain Calculation of Prestressed Concrete Beam Element (프리스트레스트 콘크리트 보 부재의 잔류변형 산정에 대한 연구)

  • Lee, Duck-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.555-562
    • /
    • 2014
  • To perform performance-based seismic design of buildings, it is necessary clear goal for usage and stability after an earthquake. To clear this goal, it requires a review of the constituent material of the building and, in particular, a member used as an indicator of the residual strain is useful. There are more usage of prestressed concrete because of prestressing steel witch has characteristics of the origin-oriented. In this study, the goal is estimating of residual strain on the prestressed concrete beam member. The expression for angle of deformed prestressed concrete beam member was obtained from using of curvature on the critical section and the equivalent plastic hinge length based on 'equivalent plastic hinge length method'. Considering the balance of strength and deformation conditions, suitable analysis values were derived from 'split Element Method'. Through various parametric studies, various factors affecting the residual strain were decided. Based on the results of this study, it is expected many researches will be proceed in the future.

A Study on Nonlinear Analysis of Reinforced Concrete Structures (철근(鐵筋)콘크리트 구조물(構造物)의 비선형(非線型) 해석(解析)에 관한 연구(硏究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.69-77
    • /
    • 1987
  • A finite element method has been developed to study the material nonlinear analysis of reinforced concrte structures. Concrete behavior under the biaxial state of stress is represented by a nonlinear constitutive relationship which incorporates tensile cracking, tensile stiffening effect between cracks and the strain-softening phenomenon beyond the maximum compressive strength. The concrete model used is based upon nonlinear elasticity by assuming concrete to be an orthotropic material and modeled as equivalent uniaxial stress-strain constitutive relationship using equivalent uniaxial strain. The streel reinforcement is assumed to be in a uniaxial stress state and is modeled as a bilinear, elasto-plastic material with strain hardening approximating the Bauschinger effect. In plane stress state, R.C. beams is modeled as a quadratic element that has two degrees of freedom in each node. And this results of finite element analysis are compared with the experimential results of midspan deflection, stresses and strains.

  • PDF

Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.805-816
    • /
    • 2015
  • In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

Evaluation of Notch Location Effect on Ductile Crack Initiation at Strength Mismatched Joints by Finite Element Method and Ultrasonic-Mechatronics System (유한요소법과 초음파 메카트로닉스 시스템에 의한 강도적 불균질 이음부의 노치위치에 따른 균열발생 한계 조건)

  • An Gyu-Baek;Bang Han-Sur;Toyoda Masao
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.87-92
    • /
    • 2005
  • It has been well hewn that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using a two-parameters criterion based on equivalent plastic strain and stress triaxiality. The present study focuses on the effects of strength mismatch, which can elevate plastic constraint due to heterogeneous plastic straining, on the critical condition for ductile fracture initiation usinga two-parameter criterion. Fracture initiation testing has been conducted under static loading using notched round bar specimens which had different notch locations. This study provides the fundamental clarification of the effect of strength mismatching and effect of notch location on the critical condition to ductile crack initiation from notch root using fuite element method and ultrasonic-mechatronics system. The critical condition of ductile crack initiation from notch root of strength mismatched tensile specimens under static loading appeared to be almost the same as those of homogeneous tensile specimens with circumferential sharp notch specimen. Also, the effect of notch location in mismatched specimens was estimated using finite element(FE) analyses.

Analysis of stamping for the Lower control arm using Explicit code (Explicit code를 이용한 Lower control arm의 스탬핑 해석)

  • 하원필;임세영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.50-58
    • /
    • 1994
  • To examine the residual stress field resulting from stamping process for the lower control arm of a car, the explicit finite element analysis is performed for the stamping process by way of the ABAQUS Explicit. The residual stress is obtained in terms of the Von Mises stress and other parameters such as equivalent plastic strain, the change of blank thickness, the final configuration of the blank and the spring back effect are also considered. Moreover, discussed is the convergence of the explicit FEM versus the punch sped and the element discretization

  • PDF