• 제목/요약/키워드: plastic behaviour

검색결과 350건 처리시간 0.024초

The Effects of Talent Type and Body Consciousness on High level-Appearance Management Behavior

  • Koo, Insook
    • 패션비즈니스
    • /
    • 제16권6호
    • /
    • pp.1-20
    • /
    • 2012
  • This study aims to define the influences of an individual's talent types and body consciousness factors on high((intense)-level appearance management behavior in 367 adults(female 172 and male 195). The present study is the first to consider both human talent type and the body consciousness on the high level-appearance management behavior correlates to appearance management behaviour. According to the result of the analysis, plastic surgery on body forms or faces are done by few people. However, straightening teeth, ear piercing, removal of spots or imperfections, and eyebrow tattoos are conducted by many consumers without much resistance. It is rather widely accepted, despite the fact that it can cause pain, discomfort, and side-effects. Furthermore, although excessive acts such as muscle training, dieting, weight managing, and oriental treatments can lead to side-effects, the standardized efficient beta value turned out to be high for these treatments. Thus, this study suggests that both the interpersonal talent among 8 talent factors and 2 body consciousness factors contributes to the reinforcement of the self-identity through high level-appearance management behaviors, but except risky plastic surgery. Therefore, this study supports the previous researches that body consciousness composed of self-source, which is desires and efforts to achieve the ideal body, and external-source, which is the internalization of other people's feedbacks.

A plastic strain based statistical damage model for brittle to ductile behaviour of rocks

  • Zhou, Changtai;Zhang, Kai;Wang, Haibo;Xu, Yongxiang
    • Geomechanics and Engineering
    • /
    • 제21권4호
    • /
    • pp.349-356
    • /
    • 2020
  • Rock brittleness, which is closely related to the failure modes, plays a significant role in the design and construction of many rock engineering applications. However, the brittle-ductile failure transition is mostly ignored by the current statistical damage constitutive model, which may misestimate the failure strength and failure behaviours of intact rock. In this study, a new statistical damage model considering rock brittleness is proposed for brittle to ductile behaviour of rocks using brittleness index (BI). Firstly, the statistical constitutive damage model is reviewed and a new statistical damage model considering failure mode transition is developed by introducing rock brittleness parameter-BI. Then the corresponding damage distribution parameters, shape parameter m and scale parameter F0, are expressed in terms of BI. The shape parameter m has a positive relationship with BI while the scale parameter F0 depends on both BI and εe. Finally, the robustness and correctness of the proposed damage model is validated using a set of experimental data with various confining pressure.

Energy equivalent lumped damage model for reinforced concrete structures

  • Neto, Renerio Pereira;Teles, Daniel V.C.;Vieira, Camila S.;Amorim, David L.N.F.
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.285-293
    • /
    • 2022
  • Lumped damage mechanics (LDM) is a recent nonlinear theory with several applications to civil engineering structures, such as reinforced concrete and steel buildings. LDM apply key concepts of classic fracture and damage mechanics on plastic hinges. Therefore, the lumped damage models are quite successful in reproduce actual structural behaviour using concepts well-known by engineers in practice, such as ultimate moment and first cracking moment of reinforced concrete elements. So far, lumped damage models are based in the strain energy equivalence hypothesis, which is one of the fictitious states where the intact material behaviour depends on a damage variable. However, there are other possibilities, such as the energy equivalence hypothesis. Such possibilities should be explored, in order to pursue unique advantages as well as extend the LDM framework. Therewith, a lumped damage model based on the energy equivalence hypothesis is proposed in this paper. The proposed model was idealised for reinforced concrete structures, where a damage variable accounts for concrete cracking and the plastic rotation represents reinforcement yielding. The obtained results show that the proposed model is quite accurate compared to experimental responses.

Modelling the critical state behaviour of granular soils: Application of NorSand constitutive law to TP-Lisbon sand

  • Antonio Viana da Fonseca;Fausto Molina-Gomez;Cristiana Ferreira;Julieth Quintero
    • Geomechanics and Engineering
    • /
    • 제34권3호
    • /
    • pp.317-328
    • /
    • 2023
  • The soil behaviour can be represented by numerical modelling of element testing using diverse constitutive models. However, not all constitutive models allow the simulation of the stress-strain response at the critical state in granular soils with both contractive and dilative behaviour. Moreover, the accuracy of these models depends highly on the quality of the experimental data used for their calibration. This study addresses the modelling of the critical state behaviour of an alluvial natural soil from the Lower Tagus Valley (south of Portugal), known as TP-Lisbon sand, using the NorSand constitutive law. For this purpose, a series of numerical simulations of element testing was carried out using two algorithms performed in Visual Basic (VB) and Fast Lagrangian Analysis of Continua (FLAC). Moreover, this study presents the characterisation of of NorSand parameters from an accurate experimental programme based on triaxial and bender element testing. This experimental program allowed defining: (i) the critical state locus, (ii) the stress-dilatancy, and (iii) the soil elasticity of TP-Lisbon sand -all fundamental to calibrate the contractive and dilative behaviour of such alluvial soil. The results revealed a good agreement between experimental data and NorSand simulations using VB and FLAC. Therefore, this study showed that the quality of laboratory testing procedures and its good interpretation enables NorSand constitutive law to capture representatively the non-associated plastic strains, often expressed by the state parameter, allowing a representation of soil behaviour of alluvial soils within the critical state soil mechanics framework for different state parameters.

Rigid plastic analysis for the seismic performance evaluation of steel storage racks

  • Montuori, Rosario;Gabbianelli, Giammaria;Nastri, Elide;Simoncelli, Marco
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.1-19
    • /
    • 2019
  • The aim of the paper is the prediction of the seismic collapse mode of steel storage pallet racks under seismic loads. The attention paid by the researchers on the behaviour of the industrial steel storage pallets racks is increased over the years thanks to their high dead-to-live load ratio. In fact, these structures, generally made by cold-formed thin-walled profiles, present very low structural costs but can support large and expensive loads. The paper presents a prediction of the seismic collapse modes of multi-storey racks. The analysis of the possible collapse modes has been made by an approach based on the kinematic theorem of plastic collapse extended to the second order effects by means of the concept of collapse mechanism equilibrium curve. In this way, the dissipative behaviour of racks is determined with a simpler method than the pushover analysis. Parametric analyses have been performed on 24 racks, differing for the geometric layout and cross-section of the components, designed in according to the EN16618 and EN15512 requirements. The obtained results have highlighted that, in all the considered cases, the global collapse mechanism, that is the safest one, never develops, leading to a dangerous situation that must be avoided to preserve the structure during a seismic event. Although the studied racks follow all the codes prescriptions, the development of a dissipative collapse mechanism is not achieved. In addition, also the variability of load distribution has been considered, reflecting the different pallet positions assumed during the in-service life of the racks, to point out its influence on the collapse mechanism. The information carried out from the paper can be very useful for designers and manufacturers because it allows to better understand the racks behaviour in seismic load condition.

2.5D Cf/SiCm 복합재의 기계적 물성 시험과 탄소성 모델링을 통한 유한요소해석 (Finite Element Analysis Through Mechanical Property Test and Elasto-plastic Modeling of 2.5D Cf/SiCm Composite Analysis)

  • 이민정;김연태;이연관
    • 한국항공우주학회지
    • /
    • 제48권9호
    • /
    • pp.663-670
    • /
    • 2020
  • 2.5D C/SiC를 적용한 구조물의 거동 특성을 유한요소해석으로 근사하기 위해 기계적 물성 특성화와 모델링 기법에 관한 연구를 수행하였다. 2.5D C/SiC 소재의 거동 특성을 분석하기 위해 인장시험을 수행하였고 수학적 균질화 기법과 수정된 혼합 법칙을 적용하여 2.5D C/SiC를 구성하는 섬유와 기지의 탄성 물성을 정의하였다. 탄소성 거동을 나타내는 기지는 소성 영역의 거동을 bilinear 함수로 근사하고 시험과 해석의 오차를 최소화하여 등가 항복 강도와 등가 소성 강성을 계산하였다. 그리고 2.5D C/SiC의 RVE를 정의하고 수정된 혼합 법칙을 적용하여 유효강성행렬을 계산하는 과정을 ABAQUS의 User-defined subroutine을 통해 구성하였다. 제안된 과정을 바탕으로 정의된 섬유와 기지의 기계적 물성을 적용하여 유한요소해석을 수행한 결과는 시험의 거동을 잘 근사하고 있음을 확인하였다.

프랙탈 표면을 가진 공구와 재료의 마이크로 접촉거동해석 (Microcontacting behaviour of material with fractal rough surface)

  • 김영석;현상일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.33-37
    • /
    • 2009
  • Finite-element methods are used to study non-adhesive, frictionless rough contact of elastic and plastic solids. Roughness on spherical surfaces is realized by self-affine fractal. True contact area between the rough surfaces and flat rigid surfaces increases with power law under external normal loads. The power exponent is sensitive to surface roughness as well as the curvature of spherical geometry. Surface contact pressures are analyzed and compared for the elastic and plastic solids. Distributions of local contact pressure are shown dependent on the surface roughness and the yield stress of plastic solids.

  • PDF

TAFEM을 이용한 터널 예제 해석

  • 조선규;정재동;엄종욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1991년도 추계학술발표회 논문집 지반공학에서의 컴퓨터 활용 COMPUTER UTILIZATION IN GEOTECHNICAL ENGINEERING
    • /
    • pp.216-232
    • /
    • 1991
  • This Finite Element Program(TAFEM) has been developed to be able to carry out the structural analsis of tunnel section and simulate the surrounding ground behaviour due to New Austrian Tunnelling Method, of which main support is the surrounding ground, itself. The Elasto-plastic theory has been applied. The used finite elements are 8-noded isoparametric element(rock & shotcrete), 2 or 3-noded rod element(rock bolt) and infinite boundary element. The load incremental method and tangential stiffness method has been used. Associated flow rule was applied to plastic flow and yield criteria inclued not only Mohr-Coulomb but also Drucker-Prager. In this paper, Drucker-Prager yield criterion has been used. The relationship between plastic strain and stress is based on the incremental strain concept and stress-strain equation on the basis of the stress path of each gauss point has been adopted. It may be rational that rock is considered to be no-tension material, so that no-tension analysis has been adopted in accordance with the brittle fracture constitutive equation.

  • PDF

Mechanical and Hygroscopic Behaviour of Teak Wood Sawdust Filled Recycled Polypropylene Composites

  • Yadav, Anil Kumar;Srivastava, Rajeev
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.202-208
    • /
    • 2018
  • In this paper, mechanical and hygroscopic properties of teak sawdust and recycled polypropylene (RPP) composites are evaluated and compared with virgin polypropylene (VPP) matrix based composites. Verities of composites are prepared by variation in the plastic types, wood plastic ratio and the addition of coupling agent in the formulations. Mixing of wood sawdust and polypropylene is done by a twin screw extruder, and then sheets of wood plastic composites (WPCs) are produced by using the compression molding method. The results show that recycled matrix composites exhibit better tensile, flexural strength with low impact strength than virgin matrix based composites. Recycled composites show low water absorption and thickness of swelling than virgin matrix based composites. The results confirm that wood content in the polymer matrix affects the performance of composites while presence maleated polypropylene (MAPP) improves the properties of the composites significantly. Developed RPP matrix composites are as useful as VPP matrix composites and have the potential to replace the wood and plastics products without any adverse effect of the plastics on the environment.

굴착과정에서 록볼트로 보강된 절리암반의 점소성 거동 분석 (A Study on the visco-plastic behavior of the jointed rock mass reinforced by rockbolts during excavation)

  • 이연구;이정인;조태진
    • 터널과지하공간
    • /
    • 제5권2호
    • /
    • pp.123-133
    • /
    • 1995
  • A two dimensional visco-plastic finite element model capable of handling the multistep excavaton was developed for investigating the effect of excavation-support sequences on the behaviour of underground openings in the jointed rock mass. Ubiquitous joint pattern was considered in the model and joint properties in each set were assumed to be identical. Passive, fully-grouted rockbolts were considered in the model. Visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Coulomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-support sequences. The reliability of the model to the stability analysis for the underground excavation in practice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF