• 제목/요약/키워드: plastic behaviour

검색결과 346건 처리시간 0.024초

다단계 디프드로잉의 공정해석에 관한 연구 (A Study on the Process Analysis of Multi-Stage Deep Drawing)

  • 심재진;전병희;김낙수
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2936-2948
    • /
    • 1993
  • Multi-stage deep drawing is an important sheet metal forming process. The deformation mechanisms of sheet metals during forming processes are complicated mainly due to the geometry and the lubrication of tools involved, the formability and the anisotropic behaviour of the material. The multi-stage deep-drawing processes including normal-drawing, reverse-drawing, and re-drawing are analyzed by use of the rigid-plastic finite element method. The anisotropic behaviour represented by r-value can be incorporated into the formulation. Punch/die loads and thickness distributions were obtained as results of simulating axisymmetric deep drawing processes. The computed results showed good agreements with experiments.

Computational simulations of concrete behaviour under dynamic conditions using elasto-visco-plastic model with non-local softening

  • Marzec, Ireneusz;Tejchman, Jacek;Winnicki, Andrzej
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.515-545
    • /
    • 2015
  • The paper presents results of FE simulations of the strain-rate sensitive concrete behaviour under dynamic loading at the macroscopic level. To take the loading velocity effect into account, viscosity, stress modifications and inertial effects were included into a rate-independent elasto-plastic formulation. In addition, a decrease of the material stiffness was considered for a very high loading velocity to simulate fragmentation. In order to ensure the mesh-independence and to properly reproduce strain localization in the entire range of loading velocities, a constitutive formulation was enhanced by a characteristic length of micro-structure using a non-local theory. Numerical results were compared with corresponding laboratory tests and available analytical formulae.

THE THEORETICAL AND SITE BEHAVIOUR OF A BRACED DIAPHRAGM WALL-A COMPARISON

  • Kim, Hak-Moon
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1990년도 PROCEEDINGS OF THE FIRST KOREA-JAPAN JOINT GEOTECHNICAL SEMINAR ON EXCAVATION and TUNNELING IN URBAN AREAS
    • /
    • pp.111-128
    • /
    • 1990
  • Three numerical analysis carried out for the design of a diaphragm wall were examined by the results of field observation data. Utilizing the wall stiffness, supporting system and construction sequence, the relative merits of those factors on the analysis of diaphragm wall have been investigated and their effects are compared tilth the observed behaviour of the wall. The predicted bending moment and wall displacement by elasto-plastic method agreed well with the observed values. The rigid slab supported system (i.e Top-Down Method) found to be the most effective way of controlling ground movement.

  • PDF

Seismic behaviour of repaired superelastic shape memory alloy reinforced concrete beam-column joint

  • Nehdi, Moncef;Alam, M. Shahria;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • 제7권5호
    • /
    • pp.329-348
    • /
    • 2011
  • Large-scale earthquakes pose serious threats to infrastructure causing substantial damage and large residual deformations. Superelastic (SE) Shape-Memory-Alloys (SMAs) are unique alloys with the ability to undergo large deformations, but can recover its original shape upon stress removal. The purpose of this research is to exploit this characteristic of SMAs such that concrete Beam-Column Joints (BCJs) reinforced with SMA bars at the plastic hinge region experience reduced residual deformation at the end of earthquakes. Another objective is to evaluate the seismic performance of SMA Reinforced Concrete BCJs repaired with flowable Structural-Repair-Concrete (SRC). A $\frac{3}{4}$-scale BCJ reinforced with SMA rebars in the plastic-hinge zone was tested under reversed cyclic loading, and subsequently repaired and retested. The joint was selected from an RC building located in the seismic region of western Canada. It was designed and detailed according to the NBCC 2005 and CSA A23.3-04 recommendations. The behaviour under reversed cyclic loading of the original and repaired joints, their load-storey drift, and energy dissipation ability were compared. The results demonstrate that SMA-RC BCJs are able to recover nearly all of their post-yield deformation, requiring a minimum amount of repair, even after a large earthquake, proving to be smart structural elements. It was also shown that the use of SRC to repair damaged BCJs can restore its full capacity.

Rate-dependent shearing response of Toyoura sand addressing influence of initial density and confinement: A visco-plastic constitutive approach

  • Mousumi Mukherjee;Siddharth Pathaka
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.197-208
    • /
    • 2023
  • Rate-dependent mechanical response of sand, subjected to loading of medium to high strain rate range, is of interest for several civilian and military applications. Such rate-dependent response can vary significantly based on the initial density state of the sand, applied confining pressure, considered strain rate range, drainage condition and sand morphology. A numerical study has been carried out employing a recently proposed visco-plastic constitutive model to explore the rate-dependent mechanical behaviour of Toyoura sand under drained triaxial loading condition. The model parameters have been calibrated using the experimental data on Toyoura sand available in published literature. Under strain rates higher than a reference strain rate, the simulation results are found to be in good agreement with the experimentally observed characteristic shearing behaviour of sand, which includes increased shear strength, pronounced post-peak softening and suppressed compression. The rate-dependent response, subjected to intermediate strain rate range, has further been assessed in terms of enhancement of peak shear strength and peak friction angle over varying initial density and confining pressure. The simulation results indicate that the rate-induced strength increase is highest for the dense state and such strength enhancements remain nearly independent of the applied confinement level.

Bounds on plastic strains for elastic plastic structures in plastic shakedown conditions

  • Giambanco, Francesco;Palizzolo, Luigi;Caffarelli, Alessandra
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.107-126
    • /
    • 2007
  • The problem related to the computation of bounds on plastic deformations for structures in plastic shakedown condition (alternating plasticity) is studied. In particular, reference is made to structures discretized by finite elements constituted by elastic perfectly plastic material and subjected to a special combination of fixed and cyclic loads. The load history is known during the steady-state phase, but it is unknown during the previous transient phase; so, as a consequence, it is not possible to know the complete elastic plastic structural response. The interest is therefore focused on the computation of bounds on suitable measures of the plastic strain which characterizes just the first transient phase of the structural response, whatever the real load history is applied. A suitable structural model is introduced, useful to describe the elastic plastic behaviour of the structure in the relevant shakedown conditions. A special bounding theorem based on a perturbation method is proposed and proved. Such theorem allows us to compute bounds on any chosen measure of the relevant plastic deformation occurring at the end of the transient phase for the structure in plastic shakedown; it represents a generalization of analogous bounding theorems related to the elastic shakedown. Some numerical applications devoted to a plane steel structure are effected and discussed.

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

횡방향보강근을 갖는 철근콘크리트보의 비탄성 회정능력에 관한 실험적 연구 (An Experimental Study on the Inelastic Rotation Capacity of Reinforced Concrete Beams with Lateral Reinforcement)

  • 연규원;이주나;강민철;윤정민;박찬수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.433-439
    • /
    • 2000
  • Reinforced concrete beams show increased ductile behavior when the compressive concrete is confined with transverse steel. In the inelastic range, the most variations of ductile behaviour are defined the equivalent length of the plastic hinge and the plastic hinge rotation. In an investigation to study the influence of such confinement, sixteen reinforced concrete beams were tested in flexure and the deflections noted at all stages of loading. For all the beams tested, the plastic hinge rotation have been computed and the effect of confinement on the same examined. The conclusions are summarized as follows: The equivalent lengths of the plastic hinge are ranged within the effective depth comparatively. The ability of the plastic hinge rotation of the reinforced concrete beams confined with transverse steel are enlarged when transverse reinforcement content are increased, but the spaces are more important as the shear force are largely increased.

  • PDF

온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석 (Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress)

  • 문형일;김헌영;최철우;정갑식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.288-292
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behaviour of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF

Al-Mg 합금의 고온 소성 변형 특성에 미치는 동적 변형 시효의 영향 (The Effect of Dynamic Strain Aging on the High Temperature Plastic Deformation Behaviour of Al-Mg Alloy)

  • 이상용;이정환
    • 소성∙가공
    • /
    • 제5권4호
    • /
    • pp.327-336
    • /
    • 1996
  • The effect of dynamic strain aging on high temperature deformation behaviour of the A-Mg alloy was investigated by strain rate change tests and stress relaxation tests between 20$0^{\circ}C$and 50$0^{\circ}C$. Yield point, short stress transient and periodic discontinuities on the stress-strain curve were considered as an evidence of the effect of dynamic strain aging. With this criterion two distinct strain rate-temperature regimes could be manifested. Dynamic strain aging was considered to be effective in the high temperature-low strain rate regime, whereas dynamic recovery was a dominant deformation mechanism in the low temperature-high strain rate regime. It was found that dynamic strain aging in the high temperature deformation was governed by the mechcanism of diffusion-controlled, viscous dislocation movement.

  • PDF