• Title/Summary/Keyword: plastic behaviour

Search Result 350, Processing Time 0.024 seconds

Relation between total degradation of steel concrete bond and degree of corrosion of RC beams experimental and computational studies

  • Maurel, Olivier;Dekoster, Mickael;Buyle-Bodin, Francois
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • This paper presents a study on the effects of localized steel-concrete bond degradation on the flexural behaviour of RC beams. A finite element analysis is undertaken to complete the experimental analysis. The first part deals with an experimental study on beams where bond was removed by using plastic tube at different locations and for various lengths. The flexural behaviour was studied at global scale (load-deflection) and local scale (moment-curvature). The second part, a numerical study using a simplified special finite element (rust element) modelling the rust layer occurring between reinforcement and concrete with corrosion was conducted in order to find the relation between the degree of corrosion and the degradation of the steel-concrete bond. The computed value of the corrosion degree corresponding to the total degradation of bond has been used in a second time to model the tests, in order to evaluate the influence of the loss of bond, the steel cross section reduction, and the combination of both. The results enable to evaluate the influence of the different corrosion effects on the flexural behaviour, according to the length and the location of the corroded zone.

Finite element modelling of GFRP reinforced concrete beams

  • Stoner, Joseph G.;Polak, Maria Anna
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.369-382
    • /
    • 2020
  • This paper presents a discussion of the Finite Element Analysis (FEA) when applied for the analysis of concrete elements reinforced with glass fibre reinforced polymer (GFRP) bars. The purpose of such nonlinear FEA model development is to create a tool that can be used for numerical parametric studies which can be used to extend the existing (and limited) experiment database. The presented research focuses on the numerical analyses of concrete beams reinforced with GFRP longitudinal and shear reinforcements. FEA of concrete members reinforced with linear elastic brittle reinforcements (like GFRP) presents unique challenges when compared to the analysis of members reinforced with plastic (steel) reinforcements, which are discussed in the paper. Specifically, the behaviour and failure of GFRP reinforced members are strongly influenced by the compressive response of concrete and thus modelling of concrete behaviour is essential for proper analysis. FEA was performed using the commercial software ABAQUS. A damaged-plasticity model was utilized to simulate the concrete behaviour. The influence of tension, compression, dilatancy, mesh, and reinforcement modelling was studied to replicate experimental test data of beams previously tested at the University of Waterloo, Canada. Recommendations for the finite element modelling of beams reinforced with GFRP longitudinal and shear reinforcements are offered. The knowledge gained from this research allows for the development of a rational methodology for modelling GFRP reinforced concrete beams, which subsequently can be used for extensive parametric studies and the formation of informed recommendations to design standards.

Time-dependent compressibility characteristics of Montmorillonite Clay using EVPS Model

  • Singh, Moirangthem Johnson;Feng, Wei-Qiang;Xu, Dong-Sheng;Borana, Lalit
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.171-180
    • /
    • 2022
  • Time-dependent stress-strain behaviour significantly influences the compressibility characteristics of the clayey soil. In this paper, a series of oedometer tests were conducted in two loading patterns and investigated the time-dependent compressibility characteristics of Indian Montmorillonite Clay, also known as black cotton soil (BC) soil, during loading-unloading stages. The experimental data are analyzed using a new non-linear function of the Elasto-Visco-Plastic Model considering Swelling behaviour (EVPS model). From the experimental result, it is found that BC soil exhibits significant time-dependent behaviour during creep compared to the swelling stage. Pore water entrance restriction due to consolidated overburden pressure and decrease in cation hydrations are responsible factors. Apart from it, particle sliding is also evident during creep. The time-dependent parameters like strain limit, creep coefficient and Cαe/Cc are observed to be significant during the loading stage than the swelling stage. The relationship between creep coefficients and applied stresses is found to be nonlinear. The creep coefficient increases significantly up to 630 kPa-760 kPa (during reloading), and beyond it, the creep coefficient decreases continuously. Several parameters like loading duration, the magnitude of applied stress, loading history, and loading path have also influenced secondary compressibility characteristics. The time-dependent compressibility characteristics of BC soil are presented and discussed in detail.

Non-Linear FEM Analysis Study of the Flexural Behavior of the RC Beams Strengthened by CFRP plate (CFRP 플레이트로 휨보강한 보의 거동에 대한 비선형 FEM 해석)

  • Koh, Byung-Soon;Yang, Dong-Suk;Park, Sun-Kyu;You, Young-Chan;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.536-539
    • /
    • 2004
  • This paper focues on the flexural behavior of RC beams externally reinforced using Carbon Fiber Reinforced Plastics plates. (CFRP) A non-linear finite element (FE) analysis is proposed in order to complete the experimental analysis of the flexural behaviour of the beams. This paper is a part of a complete program aiming to set up design formulate to predict the strength of CFRP strengthende beams, particularly when premature failure through plates-end shear or concrete cover delamination occurs. An elasto-plastic behaviour is assumed for reinforced concrete and interface elements are used to model the bond and slip.

  • PDF

A trilinear stress-strain model for confined concrete

  • Ilki, Alper;Kumbasar, Nahit;Ozdemir, Pinar;Fukuta, Toshibumi
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.541-563
    • /
    • 2004
  • For reaching large inelastic deformations without a substantial loss in strength, the potential plastic hinge regions of the reinforced concrete structural members should be confined by adequate transverse reinforcement. Therefore, simple and realistic representation of confined concrete behaviour is needed for inelastic analysis of reinforced concrete structures. In this study, a trilinear stress-strain model is proposed for the axial behaviour of confined concrete. The model is based on experimental work that was carried out on nearly full size specimens. During the interpretation of experimental data, the buckling and strain hardening of the longitudinal reinforcement are also taken into account. The proposed model is used for predicting the stress-strain relationships of confined concrete specimens tested by other researchers. Although the proposed model is simpler than most of the available models, the comparisons between the predicted results and experimental data indicate that it can represent the stress-strain relationship of confined concrete quite realistically.

State-of-the-art of advanced inelastic analysis of steel and composite structures

  • Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.341-354
    • /
    • 2001
  • This paper provides a state-of-the-art review on advanced analysis models for investigating the load-displacement and ultimate load behaviour of steel and composite frames subjected to static gravity and lateral loads. Various inelastic analysis models for steel and composite members are reviewed. Composite beams under positive and negative moments are analysed using a moment-curvature relationship which captures the effects of concrete cracking and steel yielding along the members length. Beam-to-column connections are modeled using rotational spring. Building core walls are modeled using thin-walled element. Finally, the nonlinear behaviour of a complete multi-storey building frame consisting of a centre core-wall and the perimeter frames for lateral-load resistance is investigated. The performance of the total building system is evaluated in term of its serviceability and ultimate limit states.

3D material model for nonlinear basic creep of concrete

  • Bockhold, Jorg
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.101-117
    • /
    • 2007
  • A new model predicting the nonlinear basic creep behaviour of concrete structures subjected to high multi-axial stresses is proposed. It combines a model based on the thermodynamic framework of the elasto-plastic continuum damage theory for time-independent material behaviour and a rheological model describing phenomenologically the long-term delayed deformation. Strength increase due to ageing is regarded. The general 3D solution for the creep theory is derived from a rate-type form of the uniaxial formulation by the assumption of associated creep flow and a theorem of energy equivalence. The model is able to reproduce linear primary creep as well as secondary and tertiary creep stages under high compressive stresses. For concrete in tension a simple viscoelastic formulation is applied. The material law is then incorporated into a finite element solution procedure for analysis of reinforced concrete structures. Numerical examples of uniaxial creep tests and concrete members show excellent agreement with experimental results.

Multi-Scale Modelling of a Phase Mixture Model and the Finite Element Method for Nanocrystalline Materials (나노결정 재료의 상혼합모델과 유한요소법을 결합한 멀티스케일 모델링)

  • 윤승채;서민홍;김형섭
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.174-179
    • /
    • 2004
  • The effect of grain refinement on the plastic deformation behaviour of nanocrystalline metallic materials is investigated. A phase mixture model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. For the grain interior phase two concurrent mechanisms are considered: dislocation glide and mass transfer by diffusion. The proposed constitutive model was implemented into a finite element code (DEFORM) using a semicoupled approach. The finite element method was applied to simulating room temperature tensile deformation of Cu down to the nanoscale grain size in order to investigate the pre- and post-necking behaviour.

A Study on Thermal Stress Analysis of Alumina Ceramics to Copper Brazement by Finite Element Method (알루미나 세라믹과 구리의 브레이징 접합물에 대한 열응력의 유한요소법 해석에 관한 연구)

  • 전창훈;양영수;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.547-553
    • /
    • 1990
  • With alumina ceramics to copper brazement of cylindrical shape, the thermal stress analysis was carried out by finite element method. Elastic and plastic behaviour was considered to copper, but only elastic behaviour was considered to alumina. Also material properties of alumina and copper were considered in not constant values but variable functions dependent on temperature. The result of analysis is shown that maximum tensile longitudinal stress is occurred at perimeter of alumina side interface and maximum compressive radial and tangential stresses are occurred at center of alumina side interface. Because of bending effect, tensile raidial and tangential stresses are occurred at near bottom of alumina, far from interface.

Flexural Behavior of Reinforced Concrete Beams Strengthened by CFRP Plates (탄소섬유판으로 보강된 철근콘크리트 보의 휨거동해석)

  • Yang, Dong-Suk;Koh, Byung-Soon;Park, Sun-Kyu;You, Young-Chan;Choi, Ki-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.243-246
    • /
    • 2005
  • This paper focuses on the flexural behavior of RC beams externally reinforced using Carbon Fiber Reinforced Plastics plates (CFRP). A non-linear finite element (FE) analysis is proposed in order to complete the experimental analysis of the flexural behaviour of the beams. This paper is a part of a complete program aiming to set up design formulate to predict the strength of CFRP strengthened beams, particularly when premature failure through plates-end shear or concrete cover delamination occurs. An elasto-plastic behaviour is assumed for reinforced concrete and interface elements are used to model the bond and slip.

  • PDF