• Title/Summary/Keyword: plasmid vector

Search Result 567, Processing Time 0.023 seconds

Expression and Purification of Extracellular Solute-Binding Protein (ESBP) in Escherichia coli, the Extracellular Protein Derived from Bifidobacterium longum KACC 91563

  • Song, Minyu;Kim, Hyaekang;Kwak, Woori;Park, Won Seo;Yoo, Jayeon;Kang, Han Byul;Kim, Jin-Hyoung;Kang, Sun-Moon;Van Ba, Hoa;Kim, Bu-Min;Oh, Mi-Hwa;Kim, Heebal;Ham, Jun-Sang
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.601-609
    • /
    • 2019
  • Bifidobacterium longum KACC 91563 secretes family 5 extracellular solute-binding protein via extracellular vesicle. In our previous work, it was demonstrated that the protein effectively alleviated food allergy symptoms via mast cell specific apoptosis, and it has revealed a therapeutic potential of this protein in allergy treatment. In the present study, we cloned the gene encoding extracellular solute-binding protein of the strain into the histidine-tagged pET-28a(+) vector and transformed the resulting plasmid into the Escherichia coli strain BL21 (DE3). The histidine-tagged extracellular solute-binding protein expressed in the transformed cells was purified using Ni-NTA affinity column. To enhance the efficiency of the protein purification, three parameters were optimized; the host bacterial strain, the culturing and induction temperature, and the purification protocol. After the process, two liters of transformed culture produced 7.15 mg of the recombinant proteins. This is the first study describing the production of extracellular solute-binding protein of probiotic bacteria. Establishment of large-scale production strategy for the protein will further contribute to the development of functional foods and potential alternative treatments for allergies.

In vitro endonucleolytic cleavage of synthesized cucumber mosaic virus RNA by hammerhead ribozyme (인공적으로 합성한 오이모자이크 바이러스 RNA의 헤머헤드 ribozyme에 의한 시험관내에서의 절단)

  • Park, Sang-Gyu;Hwang, Young-Soo
    • Applied Biological Chemistry
    • /
    • v.37 no.1
    • /
    • pp.56-63
    • /
    • 1994
  • Oligonucleotides for a conserved region of the coat protein gene of cucumber mosaic virus (CMV) and a hammerhead structure ribozyme against CMV RNA were synthesized using a DNA synthesizer. Both strands of oligonucleotides were annealed and restricted with BamHI/SacI, then cloned into a plasmid pBS SK (+). The cloned CMV substrate and ribozyme were sequenced to verify correct constructions. In vitro transcriptions were carried out by using T7 RNA polymerase with BssHII or SspI digests of $1\;{\mu}g$ of substrate and ribozyme clones. The size of substrate RNA was 176 nucleotides (nt) containing 50 nt of CMV RNA sequence, 6 nt of XbaI restriction site and 120 nt of vector-derived sequence in the case of BssHII digest. The size of ribozyme RNA was 164 nt containing 40 nt of ribozyme RNA sequence and same sequences of substrate. Substrate RNA was efficiently cleaved into two fragments (96 nt and 80 nt) by ribozyme RNA. This endonucleolytic cleavage occurred more efficiently at $55^{\circ}C$ than $37^{\circ}C$. SspI digest-derived substrate RNA (2234 nt) was also cleaved into two fragments by the same ribozyme. SspI digest-derived ribozyme RNA (2222 nt) cleaved the above substrate to two fragments. In vitro-tested ribozyme construct is being cloned into a plant transformation vector to develop virus-resistant plants.

  • PDF

Role of Tumor Necrosis Factor-Producing Mesenchymal Stem Cells on Apoptosis of Chronic B-lymphocytic Tumor Cells Resistant to Fludarabine-based Chemotherapy

  • Valizadeh, Armita;Ahmadzadeh, Ahmad;Saki, Ghasem;Khodadadi, Ali;Teimoori, Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8533-8539
    • /
    • 2016
  • Background: B-cell chronic lymphocytic leukemia B (B-CLL), the most common type of leukemia, may be caused by apoptosis deficiency in the body. Adipose tissue-derived mesenchymal stem cells (AD-MSCs) as providers of pro-apoptotic molecules such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), can be considered as an effective anti-cancer therapy candidate. Therefore, in this study we assessed the role of tumor necrosis factor-producing mesenchymal stem cells oin apoptosis of B-CLL cells resistant to fludarabine-based chemotherapy. Materials and Methods: In this study, after isolation and culture of AD-MSCs, a lentiviral LeGO-iG2-TRAIL-GFP vector containing a gene producing the ligand pro-apoptotic with plasmid PsPAX2 and PMDG2 virus were transfected into cell-lines to generate T293HEK. Then, T293HEK cell supernatant containing the virus produced after 48 and 72 hours was collected, and these viruses were transduced to reprogram AD-MSCs. Apoptosis rates were separately studied in four groups: group 1, AD-MSCs-TRAIL; group 2, AD-MSCs-GFP; group 3, AD-MSCs; and group 4, CLL. Results: Observed apoptosis rates were: group 1, $42{\pm}1.04%$; group 2, $21{\pm}0.57%$; group 3, $19{\pm}2.6%$; and group 4, % $0.01{\pm}0.01$. The highest rate of apoptosis thus occurred ingroup 1 (transduced TRAIL encoding vector). In this group, the average medium-soluble TRAIL was 72.7pg/m and flow cytometry analysis showed a pro-apoptosis rate of $63{\pm}1.6%$, which was again higher than in other groups. Conclusions: In this study we have shown that tumor necrosis factor (TNF) secreted by AD-MSCs may play an effective role in inducing B-CLL cell apoptosis.

Effects of Ribosomal Protein L39-L on the Drug Resistance Mechanisms of Lung Cancer A549 Cells

  • Liu, Hong-Sheng;Tan, Wen-Bin;Yang, Ning;Yang, Yuan-Yuan;Cheng, Peng;Liu, Li-Juan;Wang, Wei-Jie;Zhu, Chang-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3093-3097
    • /
    • 2014
  • Background: Cancer is a major threat to the public health whether in developed or in developing countries. As the most common primary malignant tumor, the morbidity and mortality rate of lung cancer continues to rise in recent ten years worldwide. Chemotherapy is one of the main methods in the treatment of lung cancer, but this is hampered by chemotherapy drug resistance, especially MDR. As a component of the 60S large ribosomal subunit, ribosomal protein L39-L gene was reported to be expressed specifically in the human testis and human cancer samples of various tissue origins. Materials and Methods: Total RNA of cultured drug-resistant and susceptible A549 cells was isolated, and real time quantitative RT-PCR were used to indicate the transcribe difference between amycin resistant and susceptible strain of A549 cells. Viability assay were used to show the amycin resistance difference in RPL39-L transfected A549 cell line than control vector and null-transfected A549 cell line. Results: The ribosomal protein L39-L transcription level was 8.2 times higher in drug-resistant human lung cancer A549 cell line than in susceptible A549 cell line by quantitative RT-PCR analysis. The ribosomal protein L39-L transfected cells showed enhanced drug resistance compared to plasmid vector-transfected or null-transfected cells as determined by methyl tritiated thymidine (3H-TdR) incorporation. Conclusions and Implications for Practice: The ribosomal protein L39-L gene may have effects on the drug resistance mechanism of lung cancer A549 cells.

Gene Cloning, Expression and Immunogenicity of the Protective Antigen Subolesin in Dermacentor silvarum

  • Hu, Yonghong;Zeng, Hua;Zhang, Jincheng;Wang, Duo;Li, Dongming;Zhang, Tiantian;Yang, Shujie;Liu, Jingze
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.1
    • /
    • pp.93-97
    • /
    • 2014
  • Subolesin (4D8), the ortholog of insect akirins, is a highly conserved protective antigen and thus has the potential for development of a broad-spectrum vaccine against ticks and mosquitoes. To date, no protective antigens have been characterized nor tested as candidate vaccines against Dermacentor silvarum bites and transmission of associated pathogens. In this study, we cloned the open reading frame (ORF) of D. silvarum 4D8 cDNA (Ds4D8), which consisted of 498 bp encoding 165 amino acid residues. The results of sequence alignments and phylogenetic analysis demonstrated that D. silvarum 4D8 (Ds4D8) is highly conserved showing more than 81% identity of amino acid sequences with those of other hard ticks. Additionally, Ds4D8 containing restriction sites was ligated into the pET-32(a+) expression vector and the recombinant plasmid was transformed into Escherichia coli rosetta. The recombinant Ds4D8 (rDs4D8) was induced by isopropyl ${\beta}$-D-thiogalactopyranoside (IPTG) and purified using Ni affinity chromatography. The SDS-PAGE results showed that the molecular weight of rDs4D8 was 40 kDa, which was consistent with the expected molecular mass considering 22 kDa histidine-tagged thioredoxin (TRX) protein from the expression vector. Western blot results showed that rabbit anti-D. silvarum serum recognized the expressed rDs4D8, suggesting an immune response against rDs4D8. These results provided the basis for developing a candidate vaccine against D. silvarum ticks and transmission of associated pathogens.

A Molecular Study of Rice Black-Streaked Dwarf Virus (벼 흑조위축병 바이러스의 분자생물학적 연구)

  • Park, Jong-Sug;Bae, Shin-Chyul;Kim, Young-Min;Paik, Young-Ki;Kim, Ju-Kon;Hwang, Young-Soo
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.148-153
    • /
    • 1994
  • Rice black-streaked dwarf virus (RBSDV), a member of the plant reoviridae fijivirus group, causes a serious damage for rice production in Korea. To characterize the RBSDV genome, virus particles were produced by feeding of planthopper (Laodelphax striatellus F.) carring RBSDV to maize plants for 2 days. In $30{\sim}40$ days after feeding, the viral particles were purified from the infected maize roots by using $10{\sim}40%$ sucrose gradient centrifugation. After treatment of 10% SDS to remove the viral coat proteins, ten viral double-stranded RNAs were resolved in agrose gel electrophoresis. Total dsRNA was then used to synthesize cDNA by reverse transcriptase and a cDNA library was constructed in the ${\lambda}gt11$ vector. The phages that contain RBSDV cDNA fragments were selected by hybridizing with the random-primed probe prepared from RBSDV dsRNAs. After subcloning of several cDNA fragments into the pUC19 plasmid vector, one clone (pRV3) was chosen for sequencing. The pRV3 clone was shown to be located on the RBSDV genome fragment No.3 by RNA gel-blot analysis. Sequence analysis of the clone revealed that the pRV3 contains two partial open reading frames.

  • PDF

Acute Oral Toxicity of dsRNA to Honey Bee, Apis mellifera (꿀벌에 대한 dsRNA의 급성섭식독성 평가)

  • Lim, Hye Song;Jung, Young Jun;Kim, Il Ryong;Kim, Jin;Ryu, Sungmin;Kim, Banni;Lee, Jung Ro;Choi, Wonkyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.241-248
    • /
    • 2017
  • BACKGROUND: RNA interference (RNAi) eliminates or decreases gene expression by disrupting the target mRNA or by interfering with translation. Recently, RNAi technique was applied to generate new crop traits which provide protection against pests. To establish the environmental risk assessment protocol of RNAi LMO in lab scale, we developed dsRNA expression system using E. coli and tested acute oral toxicity assay to honey. METHOD AND RESULTS: The dsRNA expression vector, L4440, was chosen and cloned 240 bp of Snf7 and GFP gene fragment. To develop the maximum dsRNA induction condition in E. coli, we tested induction time, temperature and IPTG concentration in media. To estimate the risk assessment of dsRNA to honey bee, it has been selected and cultured with dsRNA supplement for 48 hours according to OECD guideline. As a result, the optimum condition of dsRNA induction was $37^{\circ}C$, 4 hours and 0.4 mM IPTG concentration and the difference between Snf7 and GFP dsRNA molecules from E. coli was not significant in survival and behavior to honey bee. Furthermore, blast search results indicated that effective match of predicted dsRNA fragments were not existed in honey bee genome. CONCLUSION: In this study, we developed and tested the acute oral toxicity of dsRNA using E. coli expression system to honey bee.

Cell Surface Display of Cycloinulooligosaccharide Fructanotransferase Gene in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Cycloinulooligosaccharide Fructanotransferase 유전자의 표층 발현)

  • Kim, Hyun-Jin;Lee, Jae-Hyung;Kim, Hyun-Chul;Kim, Yeon-Hee;Kwon, Hyun-Ju;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.241-247
    • /
    • 2007
  • The cycloinulooligosaccharide fructanotransferase (CFTase) gene (cft) from Paenibacillus macerans was subcloned into the surface display vector, pCTcon (GAL1 promoter). The constructed plasmid, pCTECFTN (9.0 kb) was introduced to S. cerevisiae EBY100 cell and then east transformants were selected on the synthetic defined medium lacking uracil and on the inulin containing medium. The surface display of CFTase was confirmed by immunofluorescence microscopy and its enzymatic ability to form cycloinulooligosaccharides(cyclofructans, CFs) from inulin. The total activity of the CFTase was reached about 5.52 unit/1 by cultivation of yeast transformant on YPDG medium. The optimized conditions determined were as follows; pH, 8.0; temperature, $50^{\circ}C$ ; substrate concentration, 5%; inulin source, Jerusalem artichoke. By the reaction with inulin, CFs consisting of cycloinulohexaose (CF6), cycloinuloheptaose (CF7), and cycloinulooctaose (CF8) were produced and CF6 was the major product.

Cloning and Characterization of D-xylulose Kinase from Kocuria gwangalliensis Strain SJ2 (Kocuria gwangalliensis strain SJ2에서 유래된 D-xylulose kinase 유전자의 클로닝과 특성 연구)

  • Jeong, Tae Hyug;Hwang, Tae Kyung;Seo, Yong Bae;Kim, Young Tae
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.507-514
    • /
    • 2015
  • D-Xylulose is phosphorylated to D-xylulose-5-phosphate by D-xylulose kinase before it enters glycolysis via the nonoxidative pentose phosphate pathway. A gene encoding a novel D-xylulose kinase (XK) from K. gwangalliensis strain SJ2 was sequenced and expressed in E. coli. The sequence of the isolated XK gene was 1,419 bp, encoding 472 amino acids. The XK protein was more closely related to the Arthrobacter phenanthrenivorans XK than to the Bifidobacterium catenulatum one, as reflected in the sequence identity (54.9% vs. 38.7%). The XK gene was subcloned into the pCold-II expression vector. The resulting plasmid was transformed into E. coli strain BL21 (DE3) cells and the expression of the recombinant XK protein was induced by the addition of IPTG. The resulting protein was expressed as a fusion protein of approximately 48 kDa containing a N-terminal six-histidine extension that was derived from the expression vector. The expressed protein was homogenized by affinity chromatography and showed enzymatic activity corresponding to D-xylulose kinase. XK enzyme kinetic studies with D-xylulose and ATP showed a Km of 250±20 μM and 1,300±50 μM, respectively. The results obtained from this study will provide a wider knowledge base for the characterization of D-xylulose kinase at the molecular level.

Cloning and protein expression of Aggregatibacter actinomycetemcomitans cytolethal distending toxin C

  • Lee, Eun-Sun;Park, So-Young;Lee, Eun-Suk;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.317-324
    • /
    • 2008
  • Purpose: Aggregatibacter actinomycetemcomitans was associated with localized aggressive periodontitis, endocarditis, meningitis, and osteomyelitis. The cytolethal distending toxin (CDT) of A. actinomycetemcomitans was considered as a key factor of these diseases is composed of five open reading frames (ORFs). Among of them, An enzymatic subunit of the CDT, CdtB has been known to be internalized into the host cell in order to induce its genotoxic effect. However, CdtB can not be localized in host cytoplasm without the help of a heterodimeric complex consisting of CdtA and CdtC. So, some studies suggested that CdtC functions as a ligand to interact with GM3 ganglioside of host cell surface. The precise role of the CdtC protein in the mechanism of action of the holotoxin is unknown at the present time. The aim of this study was to generate recombinant CdtC proteins expression from A. actinomycetemcomitans, through gene cloning and protein used to investigate the function of Cdt C protein in the bacterial pathogenesis. Materials and Methods: The genomic DNA of A. actinomycetemcomitans Y4 (ATCC29522) was isolated using the genomic DNA extraction kit and used as template to yield cdtC genes by PCR. The amplifed cdtC genes were cloned into T-vector and cloned cdt C gene was then subcloned to pET28a expression vector. The pET28a-cdtC plasmid expressed in BL21 (DE3) Escherichia coli system. Diverse conditons were tested to opitimize the expression and purification of functional CdtC protein in E. coli. Results: In this study we reconstructed CdtC subunit of A. actinomycetemcomitans Y4 and comfirmed the recombinant CdtC expression by SDS-PAGE and Western Blotting. The expression level of the recombinant CdtC was about 2% of total bacterial proteins. Conclusion: The lab condition of procedure for the purification of functionally active recombinant CdtC protein is established. The active recombinant CdtC protein will serve to examine the role of CdtC proteins in the host recognition and enzyme activity of CDT and investigate the pathological process of A. actinomycetemcomitans in periodontal disease.