• 제목/요약/키워드: plasma-sprayed coatings

검색결과 125건 처리시간 0.02초

가열 롤에서 플라즈마 TiO2-NiCr 용사피막의 특성 (Characteristics of Plasma Sprayed TiO2-NiCr Conductive Heating Roll Coatings)

  • 강태구;진민석;고영봉;김태형;조상흠;박정식;김종철;박경채
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.28-34
    • /
    • 2007
  • The heating unit of direct heating method manufactured as the plasma spray coating of $TiO_2/NiCr$ conductive heating material on the surface of heating unit in order to improve the disadvantages of indirect heating method. $TiO_2$ and NiCr (80wt.%Ni-20wt.%Cr) that had the properties of conduction and heating was chosen for the conductive heating material. The compositions of the composite powders were studied $TiO_2-30wt.%NiCr\;and\;TiO_2-10wt.%NiCr$. As the heating temperature was increased, the hardness of heating layer was increased because of the fine microstructure and the decrease of porosity. The adhesion strength was decreased for coarsening and connection of voids in the insulation layer, and the electrical resistivity of heating layer was increased for fine crack formation and growth. In this study, the best efficient sprayed coatings with heating unit was concluded as the plasma sprayed $TiO_2-10wt.%NiCr$ coatings that was heat treated at $300^{\circ}C$.

플라즈마 제트에서의 분말 용융특성에 따른 Y2O3 코팅층의 미세조직 형성거동 (Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating)

  • 강상운;백경호
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.229-234
    • /
    • 2016
  • In this study, the degree of particle melting in $Y_2O_3$ plasma spraying and its effects on coating characteristics have been investigated in terms of microstructural features, microhardness and scratch resistance. Plasma sprayed $Y_2O_3$ coatings were formed using two different powder feeding systems: a system in which the powder is fed inside the plasma gun and a system in which the powder is fed externally. The internal powder spraying method generated a well-defined lamellae structure that was characterized by a thin porous layer at the splat boundary and microcracks within individual splats. Such micro-defects were generated by the large thermal contraction of splats from fully-molten droplets. The external powder spraying method formed a relatively dense coating with a particulate deposition mode, and the deposition of a higher fraction of partially-melted droplets led to a much reduced number of inter-splat pores and intra-splat microcracks. The microhardness and scratch resistance of the $Y_2O_3$ coatings were improved by external powder spraying; this result was mainly attributed to the reduced number of micro-defects.

Sliding Wear Characteristics of plasma Sprayed $8\%Y_{2}O_3-ZrO_2$ Coating for Post-spray Heat Treatment

  • Chae Young-Hun;Kim Seock-Sam
    • KSTLE International Journal
    • /
    • 제6권2호
    • /
    • pp.45-50
    • /
    • 2005
  • Plasma ceramic spray that is applied on a machine part under severe work conditions has been investigated for tribological behavior. The application of ceramic coatings by plasma spray has become essential in tribosystems to produce wear resistance and long life in severe conditions. The purpose of this study was to investigate the wear characteristics of $8\%Y_{2}O_3-ZrO_2$ coating, in view of the effect of post-spay heat treatment. The plasma-sprayed $8\%Y_{2}O_3-ZrO_2$ coating was studied to know the relationship between phase transformations and wear behavior related to post-spray heat treatment. Wear test was carried out with ball on disk type on normal loads of 50N,70N and 90N under room temperature. The phase transformation of phase and the value of residual stress were measured by X-ray diffraction method(XRD). Tribological characteristics and wear mechanisms of coatings were observed by SEM. The tribological wear performance was discussed in the focusing of residual stress. Consequently, post-spray heat treatment plays an important role in decreasing residual stress. Residual stress in the coating system has a significant influence on the wear mechanism of coating.

INTERACTION STUDIES OF CERAMIC VACUUM PLASMA SPRAYING FOR THE MELTING CRUCIBLE MATERIALS

  • Kim, Jong Hwan;Kim, Hyung Tae;Woo, Yoon Myung;Kim, Ki Hwan;Lee, Chan Bock;Fielding, R.S.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.683-688
    • /
    • 2013
  • Candidate coating materials for re-usable metallic nuclear fuel crucibles, TaC, TiC, ZrC, $ZrO_2$, and $Y_2O_3$, were plasmasprayed onto a niobium substrate. The microstructure of the plasma-sprayed coatings and thermal cycling behavior were characterized, and U-Zr melt interaction studies were carried out. The TaC and $Y_2O_3$ coating layers had a uniform thickness, and high density with only a few small closed pores showing good consolidation, while the ZrC, TiC, and $ZrO_2$ coatings were not well consolidated with a considerable amount of porosity. Thermal cycling tests showed that the adhesion of the TiC, ZrC, and $ZrO_2$ coating layers with niobium was relatively weak compared to the TaC and $Y_2O_3$ coatings. The TaC and $Y_2O_3$ coatings had better cycling characteristics with no interconnected cracks. In the interaction studies, ZrC and $ZrO_2$ coated rods showed significant degradations after exposure to U-10 wt.% Zr melt at $1600^{\circ}C$ for 15 min., but TaC, TiC, and $Y_2O_3$ coatings showed good compatibility with U-Zr melt.