• Title/Summary/Keyword: plasma-enhanced chemical vapor deposition (PECVD)

Search Result 400, Processing Time 0.034 seconds

Characterization of thin film Si solar cell with FTO transparent electrode (FTO 투명전극에 따른 박막 실리콘 태양전지 특성평가)

  • Kim, S.H.;Kim, Y.J.;No, I.J.;Cho, J.W.;Lee, N.H.;Kim, J.S.;Shin, P.K.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1351_1352
    • /
    • 2009
  • We deposited $SnO_2$:F thin films by atomospheric pressure chemical vapor deposition(APCVD) on corning glass. $SnO_2$:F films were used as transparent conductive oxide (TCO) electrode for Si thin film solar cells. We have investigated structural, electrical and optical properties of $SnO_2$:F thin films and fabricated thin film Si solar cells by plasma enhanced CVD(PECVD) on $SnO_2$:F thin films The cells were characterized by I-V measurement using AM1.5 spectra. Conversion efficiency of our cells were between 5.61% and 6.45%.

  • PDF

Development of real-time nanoscale contaminant particle characteristics diagnosis system in vacuum condition (진공공간 내 나노급 오염입자의 실시간 진단시스템 개발)

  • Kang, Sang-Woo;Kim, Taesung
    • Vacuum Magazine
    • /
    • v.2 no.3
    • /
    • pp.11-15
    • /
    • 2015
  • Particle characteristics diagnosis system (PCDS) was developed to measure submicron particle characteristics by modulation of particle beam mass spectrometry (PBMS) with scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). It is possible to measure the particle size distribution in real-time, and the shape, composition can be measured in sequence keeping vacuum condition. Apparatus was calibrated by measuring the size classified NaCl particle which generated at atmospheric pressure. After the calibration, particles were sampled from the exhaust line of plasma enhanced chemical vapor deposition (PECVD) process and measured. Result confirms that PCDS is capable for analyzing particles in vacuum condition.

Challenges for large size TV manufacturing;Process and Test Equipment

  • Kang, In-Doo;Brunner, Mathias;Tanaka, Tak;Sun, Sheng;Li, Julia
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1673-1675
    • /
    • 2006
  • As the manufacturing capacity needs for large size LCD TV shifts very fast into next generation, processing and test equipment makers face more difficult challenges in accommodating productivity, reliability and lead time of panel makers as well as the prerequisite of high process quality. In this paper, AKT will discuss its new innovative productivity solutions in PECVD (Plasma Enhanced Chemical Vapor Deposition), as the key thin film process system, and EBT (Electron Beam Test), as the key array test system, for the huge glass size with surface dimension larger than 2 meter by 2 meter.

  • PDF

Fabrication and Characteristics of CNT-FEAs with Under-gate Structure

  • Noh, Hyung-Wook;Jun, Pil-Goo;Ko, Sung-Woo;Kwak, Byung-Hwak;Park, Sang-Sik;Lee, Jong-Duk;Uh, Hyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1470-1473
    • /
    • 2005
  • We proposed new triode-type Field Emitter Arays using Carbon NanoTubes(CNT-FEAs) as electron emission sources at low electric fields. The CNTs were selectively grown on the patterned catalyst layer by Plasma-Enhanced Chemical Vapor Deposition (PECVD). In this structure, gate electrodes are located underneath the cathode electrodes and extracted gate is surrounded by CNT emitters. Furthermore, in order to control density of CNTs, we investigated effect of using rapid thermal annealing (RTA).

  • PDF

A study on wet etching for silicon membrane construction formation (실리콘 Membrane 구조 형성을 위한 Wet Etching에 관한 연구)

  • 김동수;정원채
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.237-240
    • /
    • 2001
  • In this paper, we have presented processing technique about wet etching for silicon membrane construction formation. In order to make selective etching of backside silicon wafer, we used Si$_3$N$_4$ layer by PECVD(Plasma Enhanced Chemical Vapor Deposition). We have measured the surface thickness in backside silicon wafer after anisortropic wet etching with KOH:distilled water solutions. Through this experiment, we acquired the etching rate for 1.29${\mu}{\textrm}{m}$/min. The average rough of Si-membrane frontside and backside was 0.26${\mu}{\textrm}{m}$, 0.90${\mu}{\textrm}{m}$, respectively.

  • PDF

The Effect of Catalysts on the Growth Characteristic of Carbon Nanotubes

  • Lee, Tae-Young;Han, Jae-Hee;Choi, Sun-Hong;Yoo, Ji-Beom;Park, Chong-Yun;Jung, Tae-Won;Yu, Se-Gi;Yi, Whi-Kun;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.666-669
    • /
    • 2002
  • Vertically aligned carbon nanotubes (CNTs) have been produced using various type of plasma enhanced chemical vapor deposition (PECVD). Catalysts such as Ni, Co, and Fe are used for growth of CNTs. To explain the effect of catalysts on the growth characteristics of CNTs, carbon species of $C_2H_2$ was observed in different catalysts using optical emission spectroscopy (OES) with theoretical calculation on the surface reaction in different catalysts.

  • PDF

Multidirectional Liquid Crystal Orientation by Using Ion Beam Irradiation

  • Ahn, Han-Jin;Kim, Kyung-Chan;Kim, Jong-Bok;Hwang, Byung-Har;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.543-546
    • /
    • 2005
  • We have investigated the alignment ability of multi-domains by using ion beam irradiation on diamond-like carbon (DLC) thin film layers. The DLC thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) system and the low energy ion beam is irradiated from Kaufman type ion gun. The direction of liquid crystal alignment is varied by the direction of Ar ion beam irradiation.

  • PDF

Surface and Structural Features of a-Si Thin Films Prepared by Various H2/H2+SiH4 Dilution (수소 가스 분율(H2/H2+SiH4)에 따른 비정질 실리콘 박막의 표면 및 구조 분석)

  • Kwon, Jin-Up
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.39-43
    • /
    • 2011
  • Amorphous silicon thin film was deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD). Each films were prepared in different dilution in the chamber gas. As a result, silicon crystallites and crystal volume fraction was increased with raising the hydrogen dilution in the gas and optical band gap was decreased. Increasement of the hydrogen contents in the chamber affected on surface roughness. In this study, thickness and surface roughness of the a-Si thin film by different hydrogen dilution was investigated by various techniques.

Growth of Vertically Aligned CNTs with Ultra Thin Ni Catalysts

  • Ryu, Je-Hwang;Yu, Yi-Yin;Lee, Chang-Seok;Jang, Jin;Park, Kyu-Chang;Kim, Ki-Seo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.62-66
    • /
    • 2008
  • We report on the growth mechanism of vertically aligned carbon nanotubes (VACNTs) using ultra thin Ni catalysts and direct current plasma enhanced chemical vapor deposition (PECVD) system. The CNTs were grown with -600 V bias to substrate electrode and catalyst thickness variation of 0.07 nm to 3 nm. The CNT density was reduced with catalyst thickness reduction and increased growth time. Cone like CNTs were grown with ultra thin Ni thickness, and it results from an etch of carbon network by reactive etchant species and continuous carbon precipitation on CNT walls. Vertically aligned sparse CNTs can be grown with ultra thin Ni catalyst.

a-Si:H Photosensor Using Cr silicide Schottky Contact

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.3
    • /
    • pp.105-107
    • /
    • 2006
  • Amorphous silicon is a kind of optical to electric conversion material with current or voltage type after generating a numerous free electron and hole when it is injected by light. It is very effective technology to make schottky diode by bonding thin film to use optical diode. In this paper, we have fabricated optical diode device by forming chrome silicide film through thermal processing with thin film($100{\AA}$) having optimal amorphous silicon. The optimal condition is that we make a thin film by using PECVD(Plasma Enhanced Chemical Vapor Deposition) to improve reliability and characteristics of optical diode. We have obtained high quality diode by using chrome silicide optical diode from dark current and optical current measurement compared to previous method. It makes a simple process and improves a good reliability.