• Title/Summary/Keyword: plasma focus

Search Result 115, Processing Time 0.024 seconds

STUDY ON THE IMPROVEMENT OF LIGHT TRAPPING IN THE SILICON-BASED THIN-FILM SOLAR CELLS (실리콘 박막 태양전지에서 광 포획(light trapping) 개선에 관한 연구)

  • Jeon Sang Won;Lee Jeong Chul;Ahn Sae Jin;Yun Jae Ho;Kim Seok Ki;Park Byung Ok;Song Jinsoo;Yoon Kyung Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.192-195
    • /
    • 2005
  • The silicon thin film solar cells were fabricated by 13.56 MHz PECVD (Plasma-Enhanced Chemical-Vapor Deposition) and 60 MHz VHF PECVD (Very High-Frequency Plasma-Enhanced Chemical-Vapor Deposition). We focus on textured ZnO:Al films prepared by RF sputtering and post deposition wet chemical etching and studied the surface morphology and optical properties. These films were optimized the light scattering properties of the textured ZnO:Al after wet chemical etching. Finally, the textured ZnO:Al films were successfully applied as substrates for silicon thin films solar cells. The efficiency of tandem solar cells with $0.25 cm^2$ area was $11.8\%$ under $100mW/cm^2$ light intensity. The electrical properties of tandem solar cells were measured with solar simulator (AM 1.5, $100 mW/cm^2)$ and spectral response measurements.

  • PDF

The Effect of Sintering on the Thermoelectric Properties of Bulk Nanostructured Bismuth Telluride (Bi2Te3) (나노구조를 기반으로 하는 Bi2Te3 소결과 그 시간에 따른 열전 특성)

  • Yu, Susanna;Kang, Min-Seok;Kim, Do-Kyung;Moon, Kyung-Sook;Toprak, M.S.;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.561-565
    • /
    • 2014
  • Thermoelectric materials have been the topic of intensive research due to their unique dual capability of directly converting heat into electricity or electrical power into cooling or heating. Bismuth telluride ($Bi_2Te_3$) is the best-known commercially used thermoelectric material in the bulk form for cooling and power generation applications In this work we focus on the large scale synthesis of nanostructured undoped bulk nanostructured $Bi_2Te_3$ materials by employing a novel bottom-up solution-based chemical approach. Spark plasma sintering has been employed for compaction and sintering of $Bi_2Te_3$ nanopowders, resulting in relative density of $g{\cdot}cm^{-3}$ while preserving the nanostructure. The average grain size of the final compacts was obtained as 200 nm after sintering. An improved NS bulk undoped $Bi_2Te_3$ is achieved with sintered at $400^{\circ}C$ for 4 min holding time.

Optical emission analysis of hybrid air-water discharges

  • Pavel, Kostyuk;Park, J.Y.;Han, S.B.;Koh, H.S.;Gou, B.K.;Lee, H.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.521-522
    • /
    • 2006
  • In this paper, hybrid air-water discharges were used to develop an optimal condition for providing a high level of water decomposition for hydrogen yield. Electrical and optical phenomena accompanying the discharges were investigated along with feeding gases, flow rates, and point-to-plane electrode gap distance. The primary focus of this experiment was put on the optical emission of the near UV range, with the energy threshold sufficient for water dissociation and excitation. The $OH(A^{2+},'=0\;X^2,"=0$) band's optical emission intensity indicated the presence of plasma chemical reactions involving hydrogen formation. In the gaseous atmosphere saturated with water vapor the OH(A-X) band intensity was relatively high compared to the liquid and transient phases although the optical emission strongly depended on the flow rate and type of feeding gas. In the gaseous phase discharge phenomenon for Ar carrier gas transformed into a gliding arc via the flow rate growth. OH(A-X) band's intensity increased according to the flow rate or residence time of He feeding gas. Reciprocal tendency was acquired for $N_2$ and Ar carrier gases. The peak value of OH(A-X) intensity was observed in the proximity of the water surface, however in the cases of Ar and $N_2$ with 0.5 SLM flow rate peaks shifted to the region below the water surface. Rotational temperature ($T_{rot}$) was estimated to be in the range of 900-3600 K, according to the carrier gas and flow rate, which corresponds to the arc-like-streamer discharge.

  • PDF

Various expression patterns of pregnancy-associated plasma protein-A

  • Jeon, Eunjeong;Lee, Jihwan;Son, Junkyu;Kim, Doosan;Lim, Dajeong;Han, Man-Hye;Hwang, Seongsoo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.155-161
    • /
    • 2022
  • Pregnancy-associated plasma protein-A (PAPP-A) is known as an important biomarker for fetal abnormality during first trimester and has a pivotal role in follicle development and corpus luteum formation. And also, it is being revealed that an expression of PAPP-A in various cells and tissues such as cancer and lesion area. PAPP-A is the major IGF binding protein-4 (IGFBP-4) protease. Cleavage of IGFBP-4 results in loss of binding affinity for IGF, causing increased IGF bioavailability for proliferation, survival, and migration. Additionally, PAPP-A can be used as a promising therapeutic target for healthy longevity. Despite growing interest, almost nothing is known about how PAPP-A expression is regulated in any tissue. This review will focus on what is currently known about the zinc metalloproteinase, PAPP-A, and its role in cells and tissues. PAPP-A is expressed in proliferating cells such as fetus in uterus, granulosa cells in follicle, dermis in wound, cancer cells, and Sertoli cells in testis. They have common characteristics of proliferation faster than normal cells with stimulating IGFs action and inhibiting IGFBPs. The PAPP-A functions and expression studies in livestock have not yet been conducted much. Further studies are needed to use PAPP-A as a marker for healthy longevity in animal science.

Metabolomic Profiles in Patients with Cervical Cancer Undergoing Cisplatin and Radiation Therapy

  • Seo-Yeon Choi;Suin Kim;Ji-Young Jeon;Min-Gul Kim;Sun-Young Lee;Kwang-Hee Shin
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.379-389
    • /
    • 2024
  • This study was aimed to evaluate endogenous metabolic changes before and after cisplatin and radiation therapy in patients with cervical cancer via untargeted metabolomic analysis using plasma samples. A total of 13 cervical cancer patients were enrolled in this study. Plasma samples were collected from each patient on two occasions: approximately one week before therapy (P1) and after completion of cisplatin and radiation therapy (P2). Of the 13 patients, 12 patients received both cisplatin and radiation therapy, whereas one patient received radiation therapy alone. The samples were analyzed using the Ultimate 3000 coupled with Q ExactiveTM Focus Hybrid Quadrupole-OrbitrapTM mass spectrometry (Thermo Fisher Scientific, Waltham, MA, USA). Chromatographic separation utilized a Kinetex C18 column 2.1×100 mm (2.6 ㎛) (Phenomenex, Torrance, CA, USA), and the temperature was maintained at 40℃. Following P2, there were statistically significant increases in the concentrations of indoxyl sulfate, phenylacetylglutamine, Lysophosphatidyethanolamine (LysoPE) (18:1), and indole-3-acetic acid compared with the concentrations observed at P1. Specifically, in the human papillomavirus (HPV) noninfection group, indoxyl sulfate, LysoPE (18:1), and phenylacetylglutamine showed statistically significant increases at P2 compared with P1. No significant changes in metabolite concentrations were observed in the HPV infection group. Indoxyl sulfate, LysoPE (18:1), phenylacetylglutamine, and indole-3-acetic acid were significantly increased following cisplatin and radiation therapy.

Pre-sleep casein protein ingestion: new paradigm in post-exercise recovery nutrition

  • Kim, Jooyoung
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.6-10
    • /
    • 2020
  • [Purpose] Milk is a commonly ingested post-exercise recovery protein source. Casein protein, found in milk, is characterized by its slow digestion and absorption. Recently, several studies have been conducted with a focus on how pre-sleep casein protein intake could affect post-exercise recovery but our knowledge of the subject remains limited. This review aimed at presenting and discussing how pre-sleep casein protein ingestion affects post-exercise recovery and the details of its potential effector mechanisms. [Methods] We systematically reviewed the topics of 1) casein nutritional characteristics, 2) pre-sleep casein protein effects on post-exercise recovery, and 3) potential effector mechanisms of pre-sleep casein protein on post-exercise recovery, based on the currently available published studies on pre-sleep casein protein ingestion. [Results] Studies have shown that pre-sleep casein protein ingestion (timing: 30 minutes before sleep, amount of casein protein ingested: 40-48 g) could help post-exercise recovery and positively affect acute protein metabolism and exercise performance. In addition, studies have suggested that repeated pre-sleep casein protein ingestion for post-exercise recovery over a long period might also result in chronic effects that optimize intramuscular physiological adaptation (muscle strength and muscle hypertrophy). The potential mechanisms of pre-sleep casein protein ingestion that contribute to these effects include the following: 1) significantly increasing plasma amino acid availability during sleep, thereby increasing protein synthesis, inhibiting protein breakdown, and achieving a positive protein balance; and 2) weakening exercise-induced muscle damage or inflammatory responses, causing reduced muscle soreness. Future studies should focus on completely elucidating these potential mechanisms. [Conclusion] In conclusion, post-exercise ingestion of at least 40 g of casein protein, approximately 30 minutes before sleep and after a bout of resistance exercise in the evening, might be an effective nutritional intervention to facilitate muscle recovery.

Identification of proteins involved in the pancreatic exocrine by exogenous ghrelin administration in Sprague-Dawley rats

  • Lee, Kyung-Hoon;Wang, Tao;Jin, Yong-Cheng;Lee, Sang-Bum;Oh, Jin-Ju;Hwang, Jin-Hee;Lim, Ji-Na;Lee, Jae-Sung;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.56 no.2
    • /
    • pp.6.1-6.4
    • /
    • 2014
  • The aims of study were to investigate the effects of intraperitoneal (i.p.) infusion of ghrelin on pancreatic ${\alpha}$-amylase outputs and the responses of pancreatic proteins to ghrelin that may relate to the pancreatic exocrine. Six male Sprague-Dawley rats (300 g) were randomly divided into two groups, a control group (C, n = 3) and a treatment group (T, $10.0{\mu}g/kg$ BW, n = 3). Blood samples were collected from rat caudal vein once time after one hour injection. The concentrations of plasma ghrelin, cholecystokinin (CCK) and alfa-amylase activity were evaluated by enzyme immunoassay (EIA) kit. Two-dimensional gel electrophoresis (2-DE) analysis was conducted to separate the proteins in pancreas tissue. Results showed that the i.p. infusion of ghrelin at doses of $10.0{\mu}g/kg$ body weight (BW) increased the plasma ghrelin concentrations (p = 0.07) and elevated the plasma CCK level significantly (p < 0.05). Although there was no statistically significant, the ${\alpha}$-amylase activity tended to increase. The proteomics analysis indicated that some pancreatic proteins with various functions were up- or down-regulated compared with control group. In conclusion, ghrelin may have role in the pancreatic exocrine, but the signaling pathway was still not clear. Therefore, much more functional studies focus on these found proteins are needed in the near future.

A Study on the Bond Strength of BCB-bonded Wafers (BCB 수지로 본딩한 웨이퍼의 본딩 결합력에 관한 연구)

  • Kwon, Yongchai;Seok, Jongwon;Lu, Jian-Qiang;Cale, Timothy;Gutmann, Ronald
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.479-486
    • /
    • 2007
  • Four point bending is used to study the dependences of bond strength of benzocyclobutene(BCB) bonded wafers and BCB thickness, the use of an adhesion promoter, and the materials being bonded. The bond strength depends linearly on BCB thickness, due to the thickness-dependent contribution of the plastic dissipation energy of the BCB and thickness independence of BCB yield strength. The bond strength increases by about a factor of two with an adhesion promoter for both $2.6{\mu}m$ and $0.4{\mu}m$ thick BCB, because of the formation of covalent bonds between adhesion promoter and the surface of the bonded materials. The bond strength at the interface between a silicon wafer with deposited oxide and BCB is about a factor of three higher than that at the interface between a glass wafer and BCB. This difference in bond strength is attributed to the difference in Si-O bond density at the interfaces. At the interfaces between plasma enhanced chemical vapor deposited (PECVD) oxide coated silicon wafers and BCB, and between thermally grown oxide on silicon wafers and BCB, 12~13 and $15{\sim}16bonds/nm^2$ need to be broken. This corresponds to the observed bond energies, $G_0s$, of 18 and $22J/m^2$, respectively. Maximum 7~8 Si-O $bonds/nm^2$ are needed to explain the $5J/m^2$ at the interfaces between glass wafers and BCB.

Simulations of Capacitively Coupled Plasmas Between Unequal-sized Powered and Grounded Electrodes Using One- and Two-dimensional Fluid Models

  • So, Soon-Youl
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.220-229
    • /
    • 2004
  • We have examined a technique of one-dimensional (1D) fluid modeling for radio-frequency Ar capacitively coupled plasmas (CCP) between unequal-sized powered and grounded electrodes. In order to simulate a practical CCP reactor configuration with a grounded side wall by the 1D model, it has been assumed that the discharge space has a conic frustum shape; the grounded electrode is larger than the powered one and the discharge space expands with the distance from the powered electrode. In this paper, we focus on how much a 1D model can approximate a 2D model and evaluate their comparisons. The plasma density calculated by the 1D model has been compared with that by a two-dimensional (2D) fluid model, and a qualitative agreement between them has been obtained. In addition, 1D and 2D calculation results for another reactor configuration with equal-sized electrodes have also been presented together for comparison. In the discussion, four CCP models, which are 1D and 2D models with symmetric and asymmetric geometries, are compared with each other and the DC self-bias voltage has been focused on as a characteristic property that reflects the unequal electrode surface areas. Reactor configuration and experimental parameters, which the self-bias depends on, have been investigated to develop the ID modeling for reactor geometry with unequal-sized electrodes.

Preliminary Analysis of Several Storm Events by using the ECT data onboard Van Allen Probes

  • Choi, Eunjin;Hwang, Junga;Kim, Hang-Pyo;Kim, Kyoung-Chan;Park, Young-Deuk;Min, Kyoung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.95.2-95.2
    • /
    • 2013
  • The Van Allen Probes were designed to study the Earth's radiation belts on various scales of space and time. The identical two spacecrafts going nearly eccentric orbits lap each other several times over the course of the mission and each probe carries five instrument suites to address the science objectives on the radiation belt. Since Van Allen Probes launched on August 30, 2012, the probes detecte several storm events up to now. To understand the particle acceleration and loss mechanism in the radiation belt, we first focus on the energetic electrons' dynamics detected by ECT (Energetic Particle, Composition, and Thermal Plasma Suite). ECT measures near-Earth space's radiation particles covering the full electron and ion spectra from ~ eV to 10's of MeV with sufficient energy resolution. In this paper, we present the preliminary results of the recent several storm events using electron data from ECT(MagEIS and REPT).

  • PDF