• Title/Summary/Keyword: plasma emission signal

Search Result 46, Processing Time 0.029 seconds

OES based PECVD Process Monitoring Accuracy Improvement by IR Background Signal Subtraction from Emission Signal (적외선 배경신호 처리를 통한 OES 기반 PECVD공정 모니터링 정확도 개선)

  • Lee, Jin Young;Seo, Seok Jun;Kim, Dae-Woong;Hur, Min;Lee, Jae-Ok;Kang, Woo Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2019
  • Optical emission spectroscopy is used to identify chemical species and monitor the changes of process results during the plasma process. However, plasma process monitoring or fault detection by using emission signal variation monitoring is vulnerable to background signal fluctuations. IR heaters are used in semiconductor manufacturing chambers where high temperature uniformity and fast response are required. During the process, the IR lamp output fluctuates to maintain a stable process temperature. This IR signal fluctuation reacts as a background signal fluctuation to the spectrometer. In this research, we evaluate the effect of infrared background signal fluctuation on plasma process monitoring and improve the plasma process monitoring accuracy by using simple infrared background signal subtraction method. The effect of infrared background signal fluctuation on plasma process monitoring was evaluated on $SiO_2$ PECVD process. Comparing the $SiO_2$ film thickness and the measured emission line intensity from the by-product molecules, the effect of infrared background signal on plasma process monitoring and the necessity of background signal subtraction method were confirmed.

Modified Principal Component Analysis for In-situ Endpoint Detection of Dielectric Layers Etching Using Plasma Impedance Monitoring and Self Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Choi, Sang-Hyuk;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.182-182
    • /
    • 2012
  • Plasma etching is used in various semiconductor processing steps. In plasma etcher, optical- emission spectroscopy (OES) is widely used for in-situ endpoint detection. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. Because of these problems, the object is to investigate the suitability of using plasma impedance monitoring (PIM) and self plasma optical emission spectrocopy (SPOES) with statistical approach for in-situ endpoint detection. The endpoint was determined by impedance signal variation from I-V monitor (VI probe) and optical emission signal from SPOES. However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ and SiNx layers are etched by fluorocarbon on inductive coupled plasma (ICP) etcher, if the proportion of $SiO_2$ and SiNx area on Si wafer are small. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance monitoring is compared with optical emission spectroscopy.

  • PDF

Characteristics of Plasma Emission Signals in Fiber Laser Welding of API Steel (III) -The Effect on Plasma Emission Signals by Shield Gas- (API강재의 파이버레이저 용접시 유기하는 플라즈마의 방사특성 (III) - 보호가스가 플라즈마 방사 신호에 미치는 영향 -)

  • Lee, Chang-Je;Kim, Jong-Do;Kim, Yu-Chan
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.60-65
    • /
    • 2013
  • Ar, $N_2$, and He are the conventional kind of shield gas that are used for laser welding. Many researches on the impact of laser welding shield gas have been done, and it is on going until now. However, there are few studies that analyze the changes and differences of the plasma emission signal. Therefore, in this study, we evaluated the change in the penetration characteristics according to the type of shield gas during fiber laser welding impacts to the plasma signal. As a result, if was checked that the difference in molecular weight of Ar, $N_2$, and He affects to the amount of spatter, and also found that the measured plasma radiation signal changes similar to the order of the molecular weight of the gases. Especially, clear change on the signal intensity per each shield gas was measured through RMS, and found that the shield gas was nothing to do with the FFT analyzed result.

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

Characteristics of Plasma Emission Signals in Fiber Laser Welding of API Steel (II) -The Relationship between Welding Conditions and Emission Signals- (API강재의 파이버레이저 용접시 유기되는 플라즈마의 방사특성 (II) -용접조건과 방사신호의 관련성-)

  • Lee, Chang-Je;Kim, Jong-Do;Kim, Yu-Chan
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.24-30
    • /
    • 2012
  • Laser welding by fiber laser accompanied by a lot of spatter and humping bead. This is because the deep and narrow keyhole usually form due to high beam quality. So the weld bead is formed defects, because the plasma jet with a high vapor pressure make the molten pool on keyhole wall scattered. For such a reason, unstable behavior of keyhole is difficult to monitor laser welding by using the laser induced plasma. Mostly, fiber laser welding of thick plates most be influenced by this effect. Therefore, fiber laser welding has been difficult to apply the sole. Thus, laser welding monitoring based on plasma measurements have much difficulty in measurements and analysis of signal. In this study, influence of the plasma emission signal according to welding speed and laser power in fiber laser welding analysed by using RMS and FFT analysis. We can verify that RMS value of the plasma emission signal changes with welding parameters in fiber laser welding, and aspect ratio greater than 1, the peak of FFT frequency had been moved in accordance with welding parameter.

In-situ Endpoint Detection for Dielectric Films Plasma Etching Using Plasma Impedance Monitoring and Self-plasma Optical Emission Spectroscopy with Modified Principal Component Analysis

  • Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.153-153
    • /
    • 2012
  • Endpoint detection with plasma impedance monitoring and self-plasma optical emission spectroscopy is demonstrated for dielectric layers etching processes. For in-situ detecting endpoint, optical-emission spectroscopy (OES) is used for in-situ endpoint detection for plasma etching. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. To overcome these problems, the endpoint was determined by impedance signal variation from I-V monitoring (VI probe) and self-plasma optical emission spectroscopy. In addition, modified principal component analysis was applied to enhance sensitivity for small area etching. As a result, the sensitivity of this method is increased about twice better than that of OES. From plasma impedance monitoring and self-plasma optical emission spectroscopy, properties of plasma and chamber are analyzed, and real-time endpoint detection is achieved.

  • PDF

XPS Investigation and Field Emission Property of the Ar Plasma Processed Carbon Nanotube Films

  • Lee, Sun-Woo;Lee, Boong-Joo;Oda, Tetsuji
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.52-56
    • /
    • 2008
  • Carbon nanotube films were fabricated by the catalytic CVD method. Plasma processed time effects on the field emission property were studied. The atomic structure was observed by using X-ray photoelectron spectroscopy (XPS). The surface composition changes were observed on the plasma processed CNT films. The O1s/C1s signal ratio and the Fls/Cls signal ratio changed from 1.1 % to 24.65 % and from 0 % to 3.1 % with plasma process time, respectively. We could guess it from these results that the Ar plasma process could change the surface composition effectively. In the case of the original-CNT film, no carbon shift was observed. In the case of the Ar plasma processed CNT films, however the oxygen related carbon shifts were observed. This oxygen related carbon shift at higher binding energy implies the increment of amount of the oxygen. It's possible that the increment of these bonds between carbon and oxygen results in the improvement of field emission performance.

Characteristics of Plasma Emission Signals in Fiber Laser Welding for API Steel (I) - Variation of Signals by Measuring Conditions - (API강재의 화이버레이저 용접시 유기하는 플라즈마의 방사특성 (I) - 측정조건에 따른 광신호의 변화 -)

  • Kim, Jong-Do;Lee, Chang-Je;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.51-57
    • /
    • 2010
  • Fiber laser is a heat source which is introduced recently, and so has a little researched data compare with conventional laser processing. Moreover basic data for welding monitoring are also insufficient. Therefore, in this study, the change of signal with measuring position and angle of plasma emission signals were analysed as a basic experiment for real time monitoring in fiber laser welding. As a result, the signals measured from the side, front and rear had the biggest intensity at $60^{\circ}$, and frequency peak to reflect the behavior of keyhole and swing of plasma by shield gas was detected at $45{\sim}60^{\circ}$. However, both intensity of signal and the result of FFT for monitoring were satisfied at the angle of $45^{\circ}$ from the side.

Characteristics of Plasma Emission Signals in Fiber Laser Welding for API Steel (I) -Variation of Signals by Measuring Conditions- (API강재의 화이버레이저 용접시 유기하는 플라즈마의 방사특성 (I) -측정조건에 따른 광신호의 변화-)

  • Kim, Jong-Do;Lee, Chang-Je;Lee, Mok-Young
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.94-94
    • /
    • 2010
  • Fiber laser is a heat source which is introduced recently, and so has a little researched data compare with conventional laser processing. Moreover basic data for welding monitoring are also insufficient. Therefore, in this study, the change of signal with measuring position and angle of plasma emission signals were analysed as a basic experiment for real time monitoring in fiber laser welding. As a result, the signals measured from the side, front and rear had the biggest intensity at $60^{\circ}$, and frequency peak to reflect the behavior of keyhole and swing of plasma by shield gas was detected at $45{\sim}60^{\circ}$. However, both intensity of signal and the result of FFT for monitoring were satisfied at the angle of $45^{\circ}$ from the side.

  • PDF

Characteristics of Plasma Emission Signals in Fiber Laser Welding of API Steel (IV) - Correlation of Keyhole's Periodic Motion and FFT Analysis Results - (API강재의 파이버레이저 용접시 유기하는 플라즈마의 방사특성 (IV) - 키홀의 주기운동과 FFT분석의 상관성 -)

  • Kim, Jong-Do;Lee, Chang-Je;Suh, Jeong
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.28-33
    • /
    • 2013
  • The effects of laser welding beam quality is very large. However, not an analysing case was found for the difference on the plasma emission signal during laser welding according to the beam quality. Therefore, in this study, we compared and evaluated penetration and signal change according to the beam quality at the a similar wavelength band by using a fiber laser and Nd:YAG laser. In addition, we took high speed videography in order to make sure that FFT analysis reflects the actual motion period of keyhole and found the period of video analysis and FFT mostly matched. As a result, it is expected to secure higher reliability than evaluating signal intensity when appling FFT to monitoring.