• 제목/요약/키워드: plasma amino acid.

검색결과 217건 처리시간 0.021초

개에서 페노바비탈 장기 투여로 유발된 표재성 괴사성 피부염 1례 (Superficial Necrolytic Dermatitis (Hepatocutaneous Syndrome) in a Dog with History of Long-Term Phenobarbital Administration)

  • 정태호;김지현;남의화;김대용;김형진;최민철;윤정희;윤화영;황철용
    • 한국임상수의학회지
    • /
    • 제27권4호
    • /
    • pp.445-449
    • /
    • 2010
  • 10세령의 암컷 말티즈가 족부 괴양 및 안면부 괴양성 피부병으로 서울대학교 수의과대학 동물병원에 내원하였다. 환자는 장기간의 페노바르비탈 투여 경력을 가지고 있었으며, 안면부 및 족부의 피부병변의 분포 양상과 간효소 수치의 상승 및 초음파 영상에서의 간의 저에코성병변들을 참고하여, 최종적으로 피부 생검을 통해 표재성 괴사성 피부염으로 진단하였다. 8개월간의 간보조제 경구 투여 및 아미노산제제의 말초 혈액 투여로 피부 증상은 약간 호전되었으나, 비가역적인 간의 손상은 회복이 힘들었으며, 8개월간의 치료 후 사망하였다.

${\gamma}$-Glutamyltransferase의 조직내 분포에 관한 연구 -단일클론항체의 효소면역측정법, 방사면역측정법, 면역조직화학검사, 자가방사기록검사 적용에 관하여 - (Distribution of Murine Tissue Specific ${\gamma}$-Glutamyltransferase: -Comparison of Six Monoclonal Antibody Applications in Enzyme Linked Immunosorbent Assay, Radioimmunoassay, Immunohistochemistry, and Autoradiography-)

  • 김명근;박윤규;류총근
    • 대한핵의학회지
    • /
    • 제28권1호
    • /
    • pp.112-123
    • /
    • 1994
  • ${\gamma}$-Glutamyltransferase (GGT: E.C. 2.3.2.2.) is a glycoprotein enzyme which is involved in glutathione metabolism and amino acid transport through the plasma membrane. It is distributed widely in several organs including liver and kidney. Several isozymes of GGT have been reported and some of the isozymes may be associated with hepatocarcinogenesis. We have produced six monoclnal antibodies (mAbs) against GGT purified from the liver of 2-acetamidofluorene (AAF) treated rats. All of the six mAbs were obtained by immunizing mice with liver GGT Six hybridomas which produced anti-GGT Abs were extensively subcloned and injected into the peritoneal cavity of BALB/c mice to obtain large quantities of Abs. These mAbs were purified from ascites by ammonium sulfate precipitation and protein A sepharose CL-4B column chromatography. Using these mAbs we preformed enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), immunohistochemistry (IHC), and autoradiography (ARG) to study the distribution of GGT isozyme in tissue. The results indicate that GGT-mAb 1 is specific for the AAF treated liver GGT, GGT-mAb 5 for the normal liver GGT, and GGT-mAb 6 for the normal kindey GGT. These mAbs may be used to evaluate the distribution of GGT isozymes in different tissues.

  • PDF

Sequential magnetic resonance spectroscopic changes in a patient with nonketotic hyperglycinemia

  • Shin, Ji-Hun;Ahn, So-Yoon;Shin, Jeong-Hee;Sung, Se-In;Jung, Ji-Mi;Kim, Jin-Kyu;Kim, Eun-Sun;Park, Hyung-Doo;Kim, Ji-Hye;Chang, Yun-Sil;Park, Won-Soon
    • Clinical and Experimental Pediatrics
    • /
    • 제55권8호
    • /
    • pp.301-305
    • /
    • 2012
  • Nonketotic hyperglycinemia (NKH) is a rare inborn error of amino acid metabolism. A defect in the glycine cleavage enzyme system results in highly elevated concentrations of glycine in the plasma, urine, cerebrospinal fluid, and brain, resulting in glycine-induced encephalopathy and neuropathy. The prevalence of NKH in Korea is very low, and no reports of surviving patients are available, given the scarcity and poor prognosis of this disease. In the current study, we present a patient with NKH diagnosed on the basis of clinical features, biochemical profiles, and genetic analysis. Magnetic resonance spectroscopy (MRS) allowed the measurement of absolute glycine concentrations in different parts of the brain that showed a significantly increased glycine peak, consolidating the diagnosis of NKH. In additional, serial MRS follow-up showed changes in the glycine/creatinine ratios in different parts of the brain. In conclusion, MRS is an effective, noninvasive diagnostic tool for NKH that can be used to distinguish this disease from other glycine metabolism disorders. It may also be useful for monitoring NKH treatment.

The modulation of TRPV4 channel activity through its Ser 824 residue phosphorylation by SGK1

  • Lee, Run-Jeoung;Shin, Sung-Hwa;Chun, Jae-Sun;Hyun, Sung-Hee;Kim, Yang-Mi;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • 제14권2호
    • /
    • pp.99-114
    • /
    • 2010
  • With the consensus sequence information of the serum glucocorticoid-induced protein kinase-1 (SGK1) phosphorylation site {R-X-R-X-X-(S/T)$\Phi$; where $\Phi$ is any hydrophobic amino acid}, we noticed that the transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, harbors the putative SGK1 phosphorylation site (on its Ser 824). We have demonstrated that TRPV4 is an SGK1 authentic substrate protein, with the phosphorylation on the Ser 824 of TRPV4 by SGK1. Further, using TRPV4 mutants (S824A and S824D), we noted that the modification of the Ser 824 activates its $Ca^{2+}$ entry, and sensitizes the TRPV4 channel to 4-$\alpha$-phorbol 12,13-didecanoate (4-${\alpha}PDD$) or heat, simultaneously enhancing its active state. Additionally, we determined that the modification of the Ser 824 controls both its plasma membrane localization and its protein interactions with calmodulin. Thus, we have proposed herein that phosphorylation on the Ser 824 of TRPV4 is one of the control points for the regulation of its functions.

Facilitation of SUMO (Small Ubiquitin-like Modifier) Modification at Tau 340-Lys Residue (a Microtubule-associated Protein) through Phosphorylation at 214-Ser Residue

  • Lee, Eun-Jeoung;Hyun, Sung-Hee;Chun, Jae-Sun;Ahn, Hye-Rim;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • 제11권1호
    • /
    • pp.39-50
    • /
    • 2007
  • Tau plays a role in numerous neuronal processes, such as vesicle transport, microtubule-plasma membrane interaction and intracellular localization of proteins. SUMO (Small Ubiquitin-like Modifier) modification (SUMOylation) appears to regulate diverse cellular processes including nuclear transport, signal transduction, apoptosis, autophagy, cell cycle control, ubiquitin-dependent degradation, as well as gene transcription. We noticed that putative SUMOylation site is localized at $^{340}K$ of $Tau(^{339}VKSE^{342})$ with the consensus sequence information (${\Phi}KxE$ ; where ${\Phi}$ represents L, I, V or F and x is any amino acid). In this report, we demonstrated that $^{340}K$ of Tau is the SUMOylation site and that a point mutant of Tau S214E (an analog of the phospho $^{214}S$ Tau) promotes its SUMOylation at $^{340}K$ and its nuclear or nuclear vicinity localization, by co-immunoprecipitation and confocal microscopy analysis. Further, we demonstrate that the Tau S214E (neither Tau S214A nor Tau K340R) mutant increases its protein stability. However, the SUMOylation at $^{340}K$ of Tau did not influence cell survival, as determined by FACS analysis. Therefore, our results suggested that the phosphorylation of Tau on $^{214}S$ residue promotes its SUMOylation on $^{340}K$ residue and nuclear vicinity localization, and increases its stability, without influencing cell survival.

Effects of the Combination of Evogliptin and Leucine on Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice

  • Shin, Chang Yell;Lee, Hak Yeong;Kim, Gil Hyung;Park, Sun Young;Choi, Won Seok;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • 제29권4호
    • /
    • pp.419-426
    • /
    • 2021
  • In this study, we aimed to investigate the effects of 8 weeks of treatment with a combination of evogliptin and leucine, a branched-chain amino acid, in mice with high-fat diet (HFD)-induced diabetes. Treatment with evogliptin alone or in combination with leucine reduced the body weight of the mice, compared to the case for those from the HFD control group. Long-term treatment with evogliptin alone or in combination with leucine resulted in a significant reduction in glucose intolerance; however, leucine alone did not affect postprandial glucose control, compared to the case for the mice from the HFD control group. Furthermore, the combination of evogliptin and leucine prevented HFD-induced insulin resistance, which was associated with improved homeostasis model assessment for insulin resistance, accompanied by markedly reduced liver fat deposition, hepatic triglyceride content, and plasma alanine aminotransferase levels. The combination of evogliptin and leucine increased the gene expression levels of hepatic peroxisome proliferator-activated receptor alpha, whereas those of the sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1 were not altered, compared to the case in the HFD-fed mice (p<0.05). Thus, our results suggest that the combination of evogliptin and leucine may be beneficial for treating patients with type 2 diabetes and hepatic steatosis; however, further studies are needed to delineate the molecular mechanisms underlying the action of this combination.

Pre-sleep casein protein ingestion: new paradigm in post-exercise recovery nutrition

  • Kim, Jooyoung
    • 운동영양학회지
    • /
    • 제24권2호
    • /
    • pp.6-10
    • /
    • 2020
  • [Purpose] Milk is a commonly ingested post-exercise recovery protein source. Casein protein, found in milk, is characterized by its slow digestion and absorption. Recently, several studies have been conducted with a focus on how pre-sleep casein protein intake could affect post-exercise recovery but our knowledge of the subject remains limited. This review aimed at presenting and discussing how pre-sleep casein protein ingestion affects post-exercise recovery and the details of its potential effector mechanisms. [Methods] We systematically reviewed the topics of 1) casein nutritional characteristics, 2) pre-sleep casein protein effects on post-exercise recovery, and 3) potential effector mechanisms of pre-sleep casein protein on post-exercise recovery, based on the currently available published studies on pre-sleep casein protein ingestion. [Results] Studies have shown that pre-sleep casein protein ingestion (timing: 30 minutes before sleep, amount of casein protein ingested: 40-48 g) could help post-exercise recovery and positively affect acute protein metabolism and exercise performance. In addition, studies have suggested that repeated pre-sleep casein protein ingestion for post-exercise recovery over a long period might also result in chronic effects that optimize intramuscular physiological adaptation (muscle strength and muscle hypertrophy). The potential mechanisms of pre-sleep casein protein ingestion that contribute to these effects include the following: 1) significantly increasing plasma amino acid availability during sleep, thereby increasing protein synthesis, inhibiting protein breakdown, and achieving a positive protein balance; and 2) weakening exercise-induced muscle damage or inflammatory responses, causing reduced muscle soreness. Future studies should focus on completely elucidating these potential mechanisms. [Conclusion] In conclusion, post-exercise ingestion of at least 40 g of casein protein, approximately 30 minutes before sleep and after a bout of resistance exercise in the evening, might be an effective nutritional intervention to facilitate muscle recovery.

해양 와편모조류 Prorocentrum minimum 기원 신규 탄산무수화효소(CAs) 유전자 3종의 차등 pH 대응 발현 (Differential Expression of Three Novel Carbonic Anhydrases (CAs) Genes in Marine Dinoflagellate Prorocentrum minimum Against Various pH Conditions)

  • 신정민;이하은;김한솔;기장서
    • Ocean and Polar Research
    • /
    • 제44권3호
    • /
    • pp.209-220
    • /
    • 2022
  • Carbonic anhydrase (CA) is a key controller of the carbon concentrating mechanism (CCM), and is known to be affected by ambient pH and CO2 compositions. Herein, we characterized three novel CAs genes (PmCA1, 2, and 3) from the marine dinoflagellate Prorocentrum minimum, and evaluated the relative expressions of the PmCAs and photosynthetic genes PmatpB and PmrbcL under different pH conditions. Each PmCA was predicted to have amino acid residues constituting the zinc binding site. With signal peptide, PmCA1 and PmCA2 were predicted to be intracellular CAs located in the cytoplasm and chloroplast membrane, respectively. On the other hand, PmCA3 was predicted to be extracellular CA located in the plasma membrane. Also, PmCA1 was classified into the beta family, and PmCA2 and PmCA3 were classified into the alpha family via phylogenic analysis. The photosynthesis efficiency of P. minimum was similar at pH 7 to 9, and decreased significantly at pH 6 and pH 10. Overall, relative gene expression levels of the three PmCAs decreased at low pH, and increased as pH increased. Photosynthesis related genes, PmatpB and PmrbcL, showed similar expression patterns to those of PmCAs. These results suggest that changes in seawater pH may affect photosynthesis and CO2 metabolism in marine dinoflagellates.

Unveiling the impact of lysosomal ion channels: balancing ion signaling and disease pathogenesis

  • Yoona Jung;Wonjoon Kim;Na Kyoung Shin;Young Min Bae;Jinhong Wie
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.311-323
    • /
    • 2023
  • Ion homeostasis, which is regulated by ion channels, is crucial for intracellular signaling. These channels are involved in diverse signaling pathways, including cell proliferation, migration, and intracellular calcium dynamics. Consequently, ion channel dysfunction can lead to various diseases. In addition, these channels are present in the plasma membrane and intracellular organelles. However, our understanding of the function of intracellular organellar ion channels is limited. Recent advancements in electrophysiological techniques have enabled us to record ion channels within intracellular organelles and thus learn more about their functions. Autophagy is a vital process of intracellular protein degradation that facilitates the breakdown of aged, unnecessary, and harmful proteins into their amino acid residues. Lysosomes, which were previously considered protein-degrading garbage boxes, are now recognized as crucial intracellular sensors that play significant roles in normal signaling and disease pathogenesis. Lysosomes participate in various processes, including digestion, recycling, exocytosis, calcium signaling, nutrient sensing, and wound repair, highlighting the importance of ion channels in these signaling pathways. This review focuses on different lysosomal ion channels, including those associated with diseases, and provides insights into their cellular functions. By summarizing the existing knowledge and literature, this review emphasizes the need for further research in this field. Ultimately, this study aims to provide novel perspectives on the regulation of lysosomal ion channels and the significance of ion-associated signaling in intracellular functions to develop innovative therapeutic targets for rare and lysosomal storage diseases.

홍합 모사 카테콜기가 도입된 키토산 지혈제 연구 동향 (Recent Progress in Mussel-inspired Catechol-conjugated Chitosan Hemostats)

  • 조성연;김수미;박찬우;홍승원;김홍기;류지현
    • 접착 및 계면
    • /
    • 제24권4호
    • /
    • pp.113-119
    • /
    • 2023
  • 홍합의 수중 접착능력은 도파(DOPA)와 라이신(Lysine), 히스티딘(Histidine)과 같은 홍합접착단백질의 아미노산 잔기가 중요한 역할을 한다고 보고되었고, 이에 따라, 카테콜과 아민기를 동시에 갖는 접착성 카테콜아민(Catecholamine) 물질을 기반으로 다양한 의공학적 연구가 진행되고 있다. 카테콜기가 도입된 키토산은 아민이 풍부한 키토산에 카테콜기를 도입한 카테콜아민으로, 이를 이용하여 조직접착제나 창상치유제, 지혈제, 약물전달체 및 조직공학용 담체 등 다양한 의공학적 적용이 가능하다. 특히, 키토산-카테콜 물질은 지혈제로 미국 및 한국 식품의약품안전처의 승인을 받아, 연구개발에서부터 제품개발까지 이루어진 홍합 모사 물질이다. 이에 본 총설에서는 지혈제로써의 키토산-카테콜 물질에 대한 연구 동향을 살펴보고자 한다. 이를 위해, 카테콜기가 도입됨에 따라 나타나는 키토산-카테콜의 특성, 지혈 메커니즘, 다양한 제형에 대하여 다루고자 한다.