• Title/Summary/Keyword: plants functions

Search Result 535, Processing Time 0.033 seconds

Theory of Coagulation(I) Coagulation Theory Including Hydrodynamics and Interparticle Forces (응집의 이론 (I) - 수리동역학과 입자간 작용력을 고려한 응집의 모델 -)

  • Han, Moo Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.65-77
    • /
    • 1995
  • The kinetics of flocculation of heterodisperse suspension like those in water treatment plants and natural water system are usually described by the Smoluchowski equation, which incorporates collision frequency functions for particle collisions by Brownian motion, fluid shear, and differential sedimentation. These collisionfrequeney functions have been based on a rectilinear view of collisions, i.e., one that ignores short-range forces and changes in fluid motion as particles approach one another. In this research, a curvilinear approach, i.e., one that accounts for hydrodynamic forces and particle interaction in the collision of two different size particles is developed. Collision efficiency factors of each mechanism can be calculated by trajectory analysis (fluid shear and differential sedimentation) or the solution of diffusion equation (Brownian motion). The results are presented as a set of corrections to the rectilinear collision frequency functions for each mechanism.

  • PDF

OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis

  • Jin, Xiao-Fen;Xiong, Ai-Sheng;Peng, Ri-He;Liu, Jin-Ge;Gao, Feng;Chen, Jian-Min;Yao, Quan-Hong
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.34-39
    • /
    • 2010
  • Expression patterns of OsAREB1 revealed that expression of OsAREB1 gene can be induced by ABA, PEG and heat. Yeast one-hybrid assay demonstrated it can bind to ABA-responsive element (ABRE), which was found in most stress-induced genes. Transgenic Arabidopsis over-expressing OsAREB1 had different responses to ABA and glucose compared to wild-type plants, which suggest OsAREB1 might have a crucial role in these two signaling pathways. Further analysis indicate that OsAREB1 have multiple functions in Arabidopsis. First, OsAREB1 transgenic plants had higher resistance to drought and heat, and OsAREB1 up-regulated the ABA/stress related gene such as RD29A and RD29B. Second, it delayed plant flowering time by down-regulating the expression of flowering-related genes, such as FT, SOC1, LFY and AP1. Due to the dates, OsAREB1 may function as a positive regulator in drought/heat stresses response, but a negative regulator in flowering time in Arabidopsis.

Bow hull-form optimization in waves of a 66,000 DWT bulk carrier

  • Yu, Jin-Won;Lee, Cheol-Min;Lee, Inwon;Choi, Jung-Eun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.499-508
    • /
    • 2017
  • This paper uses optimization techniques to obtain bow hull form of a 66,000 DWT bulk carrier in calm water and in waves. Parametric modification functions of SAC and section shape of DLWL are used for hull form variation. Multi-objective functions are applied to minimize the wave-making resistance in calm water and added resistance in regular head wave of ${\lambda}/L=0.5$. WAVIS version 1.3 is used to obtain wave-making resistance. The modified Fujii and Takahashi's formula is applied to obtain the added resistance in short wave. The PSO algorithm is employed for the optimization technique. The resistance and motion characteristics in calm water and regular and irregular head waves of the three hull forms are compared. It has been shown that the optimal brings 13.2% reduction in the wave-making resistance and 13.8% reduction in the added resistance at ${\lambda}/L=0.5$; and the mean added resistance reduces by 9.5% at sea state 5.

A study on classification of the security controls for the effective implementation to nuclear power plant

  • Han, Sang Min;Lee, Chanyoung;Chae, Young Ho;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1245-1252
    • /
    • 2022
  • As regulatory bodies require full implementation of security controls in nuclear power plants (NPPs), security functions for critical digital assets are currently being developed. For the ultimate introduction of security controls, not alternative measures, it is important to understand the relationship between possible cyber threats to NPPs and security controls to prevent them. To address the effectiveness of the security control implementation, this study investigated the types of cyber threats that can be prevented when the security controls are implemented through the mapping of the reorganized security controls in RS-015 to cyber threats on NPPs. Through this work, the cyber threat that each security control can prevent was confirmed, and the effectiveness of several strategies for implementing the security controls were compared. This study will be a useful reference for utilities or researchers who cannot use design basis threat (DBT) directly and be helpful when introducing security controls to NPPs that do not have actual security functions.

CRISPR/CAS9 as a Powerful Tool for Crop Improvement

  • Song, Jae-Young;Nino, Marjohn;Nogoy, Franz Marielle;Jung, Yu-Jin;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • Implementation of crop improvement programs relies on genetic diversity. To overcome the limited occurrence of natural mutations, researchers and breeders applied diverse methods, ranging from conventional crossing to classical bio-technologies. Earlier generations of knockout and gain-of-function technologies often result in incomplete gene disruption or random insertions of transgenes into plant genomes. The newly developed editing tool, CRISPR/Cas9 system, not only provides a powerful platform to efficiently modify target traits, but also broadens the scope and prospects of genome editing. Customized Cas9/guide RNA (gRNA) systems suitable for efficient genomic modification of mammalian cells or plants have been reported. Following successful demonstration of this technology in mammalian cells, CRISPR/Cas9 was successfully adapted in plants, and accumulating evidence of its feasibility has been reported in model plants and major crops. Recently, a modified version of CRISPR/Cas9 with added novel functions has been developed that enables programmable direct irreversible conversion of a target DNA base. In this review, we summarized the milestone applications of CRISPR/Cas9 in plants with a focus on major crops. We also present the implications of an improved version of this technology in the current plant breeding programs.

Arabidopsis PYL8 Plays an Important Role for ABA Signaling and Drought Stress Responses

  • Lim, Chae Woo;Baek, Woonhee;Han, Sang-Wook;Lee, Sung Chul
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.471-476
    • /
    • 2013
  • Plants are frequently exposed to numerous environmental stresses such as dehydration and high salinity, and have developed elaborate mechanisms to counteract the deleterious effects of stress. The phytohormone abscisic acid (ABA) plays a critical role as an integrator of plant responses to water-limited condition to activate ABA signal transduction pathway. Although perception of ABA has been suggested to be important, the function of each ABA receptor remains elusive in dehydration condition. Here, we show that ABA receptor, pyrabactin resistance-like protein 8 (PYL8), functions in dehydration conditions. Transgenic plants overexpressing PYL8 exhibited hypersensitive phenotype to ABA in seed germination, seedling growth and establishment. We found that hypersensitivity to ABA of transgenic plants results in high degrees of stomatal closure in response to ABA leading to low transpiration rates and ultimately more vulnerable to drought than the wild-type plants. In addition, high expression of ABA maker genes also contributes to altered drought tolerance phenotype. Overall, this work emphasizes the importance of ABA signaling by ABA receptor in stomata during defense response to drought stress.

A Study on Automatic Control Systems for Seawater Desalination Plants (해수 담수화 플랜트 제어 시스템 구성 방안 연구)

  • Ju, Young-Duk;Kim, Kyeong-Beom;Kim, Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.3-9
    • /
    • 2008
  • Recently, the plant industries are being activated and plant control systems use various technologies. Because the optimized design for the plants is very important for the reducing of operation and maintenance costs, automatic control systems become more important. Plant control systems consist of the master controller, the plant networks, the programming environment for engineering, monitoring software and the field devices. The control systems should have reliability, availability and safety. Modular architecture of hardware and software makes flexible configuration of the control systems. Each component should have diagnostic functions. It follows industrial standards and makes open systems. Open systems increase accessibility against the data which is distributed in the plants. The controllers including processor and communication modules use the up-to-date technology. They have real time and fault tolerant function by duplicating processors or networks. It also enables to make the distributed control systems. The distributed architecture makes more scalable main control system. Automatic control systems can be operated with better performance. In this paper, we analyzed the requirements of the seawater desalination plants and made some consideration facts for developing the optimized controller. Also we described the design concept of the main controller, which consists of several modules. We should validate and complement the design for the reliability and better performance.

  • PDF

Proteomic Dissection of Abiotic Stress Response in Crop Plants

  • Alam, Iftekhar;Sharmin, Shamima Akhtar;Lee, Byung-Hyun
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.196-204
    • /
    • 2011
  • Abiotic stress is the primary cause of crop loss worldwide, reducing average yields for most major crop plants by more than 50%. In addition, future agricultural production and management will encounter multifaceted challenges from global climate change. Therefore, it is necessary to study the molecular response of crop plants to the stresses in order to develop appropriate strategies to sustain food production under adverse environmental conditions. We carried out a large scale proteomic analysis of soybean plants in response to various abiotic stresses, including drought, salinity, waterlogging and their interactions. Proteins were analyzed by two dimensional polyacrylamide gel electrophoresis followed by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. The identified proteins are involved in a wide range of cellular functions. In addition to the well known stress-associated proteins, we identified several novel proteins, which were not reported before. In many cases our proteomic data bridges the gap between mRNA and metabolite data. Our studie provides new insights into identification of abiotic stress responsive proteins in soybean, and demonstrates the advantages of proteomic analysis in dissecting metabolic and regulatory networks.

  • PDF

Phytochemicals and antioxidant capacity of some tropical edible plants

  • Hong, Heeok;Lee, Jun-Hyeong;Kim, Soo-Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1677-1684
    • /
    • 2018
  • Objective: To find biological functions such as antibacterial and antioxidant activities in several tropical plants and to investigate the possibility of antibiotic substitute agents to prevent and treat diseases caused by pathogenic bacteria. Methods: Plants such as Poncirus trifoliata fruit (Makrut), Zingiber officinale Rosc (Khing), Areca catechu L. (Mak), Solanum melongena L. I (Makkhuayao), and Solanum melongena L. II (Makhurapro) were extracted by methanol, n-hexane, chloroform, ethyl acetate, butanol and water. The free radical scavenging activities were measured using 2-diphenyl-2-picryl hydrazyl photometric assay. Antibacterial activities with a minimum inhibitory concentration (MIC) were observed by agar diffusion assay against pathogenic strains of Escherichia coli, Burkholderia sp., Haemopilus somnus, Haemopilus parasuis, Clostridium perfringens, and Pantoea agglomerans. Results: Poncirus trifoliata fruit methanol extract showed antibacterial activities against gram-negative and gram-positive pathogens. Additionally, this showed the strongest antibacterial activity against Burkholderia sp. and Haemopilus somnus with MIC $131{\mu}g/mL$, respectively. Areca catechu L. water extract showed antibacterial activities against Burkholderia sp., Haemopilus somnus, and Haemopilus parasuis. The MIC value for Haemopilus parasuis was $105{\mu}g/mL$ in this. Antioxidant activity of Zingiber officinale Rosc n-hexane extract showed 2.23 mg/mL effective concentration 50% ($EC_{50}$) value was the highest activity among tropical plants extracts. Total polyphenol content in Zingiber officinale Rosc methanol extract was $48.4{\mu}g/mL$ and flavonoid content was $22.1{\mu}g/mL$ showed the highest values among tested plants extracts. Conclusion: Taken together, these results suggest that tropical plants used in this study may have a potential benefit as an alternative antibiotics agent through their antibacterial and antioxidant activities.

PRESENT DAY EOPS AND SAMG - WHERE DO WE GO FROM HERE?

  • Vayssier, George
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.225-236
    • /
    • 2012
  • The Fukushima-Daiichi accident shook the world, as a well-known plant design, the General Electric BWR Mark I, was heavily damaged in the tsunami, which followed the Great Japanese Earthquake of 11 March 2011. Plant safety functions were lost and, as both AC and DC failed, manoeuvrability of the plants at the site virtually came to a full stop. The traditional system of Emergency Operating Procedures (EOPs) and Severe Accident Management Guidelines (SAMG) failed to protect core and containment, and severe core damage resulted, followed by devastating hydrogen explosions and, finally, considerable radioactive releases. The root cause may not only have been that the design against tsunamis was incorrect, but that the defence against accidents in most power plants is based on traditional assumptions, such as Large Break LOCA as the limiting event, whereas there is no engineered design against severe accidents in most plants. Accidents beyond the licensed design basis have hardly been considered in the various designs, and if they were included, they often were not classified for their safety role, as most system safety classifications considered only design basis accidents. It is, hence, time to again consider the Design Basis Accident, and ask ourselves whether the time has not come to consider engineered safety functions to mitigate core damage accidents. Associated is a proper classification of those systems that do the job. Also associated are safety criteria, which so far are only related to 'public health and safety'; in reality, nuclear accidents cause few casualties, but create immense economical and societal effects-for which there are no criteria to be met. Severe accidents create an environment far surpassing the imagination of those who developed EOPs and SAMG, most of which was developed after Three Mile Island - an accident where all was still in place, except the insight in the event was lost. It requires fundamental changes in our present safety approach and safety thinking and, hence, also in our EOPs and SAMG, in order to prevent future 'Fukushimas'.