• 제목/요약/키워드: plant-based proteins

검색결과 160건 처리시간 0.034초

Structure and action mechanism of humic substances for plant stimulations

  • Jeon, Jong-Rok;Yoon, Ho Young;Shin, Gyeong-Im;Jeong, Song Yi;Cha, Joon-Yung;Kim, Woe-Yeon
    • 한국초지조사료학회지
    • /
    • 제38권3호
    • /
    • pp.175-179
    • /
    • 2018
  • Humic substances that can be obtained from coal resources such as leonardite in a bulk scale have been employed as crop stimulators and soil conditioners. The polymeric organics containing a variety of aromatic and aliphatic structures are known to activate plants in a multifunctional way, thus resulting in enhanced germination rate and abiotic stress resistance concomitant with induction of numerous genes and proteins. Although detailed structural-functional relationship of humic substances for plant stimulations has not been deciphered yet, cutting-edge analytical tools have unraveled critical features of humic architectures that could be linked to the action mechanisms of their plant stimulations. In this review article, we introduce key findings of humic structures and related biological functions that boost plant growth and abiotic stress resistance. Oxygen-based functional groups and plant hormone-like structures combined with labile and recalcitrant carbon backbones are believed to be critical moieties to induce plant stimulations. Some proteins such as HIGH-AFFINITY $K^+$ TRANSPORTER 1, phospholipase A2 and $H^+$-ATPase have been also recognized as key players that could be critically involved in humic substance-driven changes in plant physiology.

Comprehensive proteome analysis using quantitative proteomic technologies

  • Kamal, Abu Hena Mostafa;Choi, Jong-Soon;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.196-204
    • /
    • 2010
  • With the completion of genome sequencing of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. The recent techniques of proteomics have been advanced quickly so that the high-throughput and systematic analyses of cellular proteins are enabled in combination with bioinformatics tools. Furthermore, the development of proteomic techniques helps to elucidate the functions of proteins under stress or diseased condition, resulting in the discovery of biomarkers responsible for the biological stimuli. Ultimate goal of proteomics orients toward the entire proteome of life, subcellular localization, biochemical activities, and their regulation. Comprehensive analysis strategies of proteomics can be classified as three categories: (i) protein separation by 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification by either Edman sequencing or mass spectrometry (MS), and (iii) quanitation of proteome. Currently MS-based proteomics turns shiftly from qualitative proteome analysis by 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, to quantitative proteome analysis. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. The in vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes, protein-labeling tagging with isotope-coded affinity tag, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope labeled amino acid can be in vivo labeled into live culture cells through metabolic incorporation. MS-based proteomics extends to detect the phosphopeptide mapping of biologically crucial protein known as one of post-translational modification. These complementary proteomic techniques contribute to not only the understanding of basic biological function but also the application to the applied sciences for industry.

Two- Dimensional Electrophoresis Analysis of Proteins; Bacillus subtilis LTD and Its Antifungal Activity Deficient Mutant

  • Lee, Young-Keun;Dinh, Le Thi;Jang, Yu-Sin;Chung, Hye-Young;Chang, Hwa-Hyoung
    • 환경생물
    • /
    • 제22권4호
    • /
    • pp.487-493
    • /
    • 2004
  • To investigate the antifungal activity related protein in pesticidal bacteria, a bacterial strain LTD was isolated from soil collected at Gimje in Jeonbuk province, Korea, and identified as Bacillus subtilis LTD based on a API50 CHB kit and 168 rDNA sequencing. It has an antifungal activity against 9 plant pathogenic fungi in a paper disc assay. The antifungal activity- deficient mutant, B. subtilis mLTD was induced at a 5 kGy dose of $^{60}Co$ gamma radiation. Using the two-dimensional electrophoresis and the matrix assisted laser desorption ionization time-of-flight mass spectrometry, the comparison analysis of proteins between the wild and mutant were performed. A major intracellular serine proteinase IspA (MW: 32.5 kDa), a NAD (P) H dehydrogenase (MW: 20.0 kDa), and a stage II sporulation protein AA, SpoIIAA (MW: 14.3kDa) were detected only in the B. subtilis LTD. These results suggested that the functions of these proteins found only in the B. subtilis LTD could. be closely related to the antifungal activity against plant pathogenic fungi.

새로운 방법을 이용한 칼모둘린 결합 단백질 분리를 위한 형질 전환 식물체의 구축 (Construction of a Transgenic Plant to Develop a New Method for the Isolation of Calmodulin-Binding Proteins)

  • 김선호;이경희;김경은;정미순;임채오;이신우;정우식
    • 생명과학회지
    • /
    • 제17권9호통권89호
    • /
    • pp.1177-1181
    • /
    • 2007
  • 칼모둘린은 칼슘과 결합하는 센서로써 다양한 칼모둘린 결합 단백질들과의 상호 작용을 통하여 세포 내에서 여러가지 기능을 조절한다. 진핵 생물들은 많은 종류의 칼모둘린 결합 단백질을 가지고 있기 때문에 이러한 단백질들의 분리와 특성 규명이 중요하다. 이미 여러 가지 방법들을 이용하여 칼모둘린 결합 단백질들이 분리되었고 이미 알려진 단백질의 구조적인 유사성을 토대로 더 많은 단백질들이 예측되었다. 우리는 애기장대에서 칼모둘린 결합 단백질의 분리와 특성 규명을 위해 형광 단백질과 융합된 칼모둘린 과발현 형질 전환체를 제조하여 공촛점 현미경과 Western blot 을 이용하여 과발현 형질 전환체를 선별하였다. 또한 형질 전환체 내의 칼모둘린이 칼모둘린 결합 단백질과 상호 작용함을 pull-down 분석을 통해서 확인하였다. 이러한 결과들을 토대로 칼모둘린 과발현 형질 전환체를 이용하여, 칼모둘린과 상호 작용하는 여러 가지 칼모둘린 결합 단백질들을 분리할 수 있을 것으로 기대된다.

Characterization and Transcriptional Expression of the α-Expansin Gene Family in Rice

  • Shin, Jun-Hye;Jeong, Dong-Hoon;Park, Min Chul;An, Gynheung
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.210-218
    • /
    • 2005
  • The rice genome contains at least 28 EXPA (${\alpha}$-expansin) genes. We have obtained near full-length cDNAs from the previously uncharacterized genes. Analysis of these newly identified clones together with the 12 identified earlier showed that the EXPA genes contain up to two introns and encode proteins of 240 to 291 amino acid residues. The EXPA proteins contain three conserved motifs: eight cysteine residues at the N-terminus, four tryptophan residues at the C-terminus, and a histidine-phenylalanine-aspartate motif in the central region. EXPA proteins could be divided into six groups based on their sequence similarity. Most were strongly induced in two-day-old seedlings and in the roots of one-week-old plants. However, only 14 genes were expressed in the aboveground organs, and their patterns were quite diverse. Transcript levels of EXPA7, 14, 15, 18, 21, and 29 were greater in stems, while EXPA2, 4, 5, 6, and 16 were highly expressed in both stem and sheath but not in leaf blade. EXPA1 is leaf blade-preferential, and EXP9 is leaf sheath-preferential. Most of the root-expressed genes were more strongly expressed in the dividing zone. However, the Group 2 EXPA genes were also strongly expressed in both mature and dividing zones, while EXPA9 was preferentially expressed in the elongation zone. Fourteen EXPA genes were expressed in developing panicles, with some being expressed during most developmental stages, others only as the panicles matured. These diverse expression patterns of EXPA genes suggest that in general they have distinct roles in plant growth and development.

Identification and characterization of the phytocystatin family from Brassica rapa

  • Hong, Joon-Ki;Hwang, Jung-Eun;Park, Tae-Ho;Zang, Yun-Xiang;Lee, Sang-Choon;Kwon, Soo-Jin;Mun, Jeong-Hwan;Kim, Hyun-Uk;Kim, Jin-A;Jin, Mi-Na;Kim, Jung-Sun;Lee, Soo-In;Lim, Myung-Ho
    • Journal of Plant Biotechnology
    • /
    • 제35권4호
    • /
    • pp.317-327
    • /
    • 2008
  • Phytocystatins, which are inhibitors of plant cysteine peptidases, are involved in the regulation of protein turnover and in the defense against insect pests and pathogens. Extensive searches in the Brassica rapa genome allowed the prediction of at least eight different phytocystatin genes on seven chromosomes in the B. rapa genome. Structure comparisons based on alignments of the all BrCYS ($\underline{B}$. $\underline{r}apa$ $phyto{\underline{cys}}tatin$) proteins using the CLUSTALW program revealed conservation of the three consensus motifs known to interact with the active site of cysteine peptidases. According to the phylogenetic analysis based on the deduced amino acid sequences, the eight BrCYS proteins were divided into several clusters related to the orthologous phytocystatin. The predicted three-dimensional structure models of the eight BrCYS proteins demonstrate that all of these proteins are similar to the reported crystal structure of oryzacystatin-I (OC-I). Digital northern and RT-PCR analyses indicated that the eight BrCYS genes exhibit different expression patterns in B. rapa tissues and respond differently to abiotic stimuli. The differences in gene structure and expression between the eight BrCYS genes suggest that these proteins may play diverse physiological roles in B. rapa and may interact with cysteine peptidases through different mechanisms.

Plant Light Signaling Mediated by Phytochromes and Plant Biotechnology

  • Song, Pill-Soon
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1998년도 The 12th Symposium on Plant Biotechnology Vol.12
    • /
    • pp.83-96
    • /
    • 1998
  • The plant pigment proteins phytochromes are a molecular light sensor or switch for photomorphogenesis involving a variety of growth and developmental responses of plants to red and far-red wavelength light. Underscoring the photomorphogenesis mediated by phytochromes is the light signal transduction at molecular and cellular levels. For example, a number of genes activated by the phytochrome-mediated signal transduction cascade have been identified and characterized, especially in Arabidopsis thaliana. The light sensor/switch function of phytochromes are based on photochromism of the covalently linked tetrapyrrole chromophore between the two photoreversible forms, Pr and Pfr. The photochromism of phytochromes involves photoisomerization of the tetrapyrrole chromophore. The "photosensor" Pr-form ("switch off" conformation) of phytochromes strongly absorbs 660 nm red light, whereas the "switch on" Pfr-conformation preferentially absorbs 730 nm far-red light. The latter is generally considered to be responsible for eliciting transduction cascades of the red light signal for various responses of plants to red light including positive or negative expression of light-responsive genes in plant nuclei and chloroplasts. In this paper, we discuss the structure-function of phytochromes in plant growth and development, with a few examples of biotechnological implications.

  • PDF

New Aspects of Gene-for-Gene Interactions for Disease Resistance in Plant

  • Nam, Jaesung
    • The Plant Pathology Journal
    • /
    • 제17권2호
    • /
    • pp.83-87
    • /
    • 2001
  • Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products. Recent studies arising from molecular cloning of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on mode of action of gene-for-gene interaction. Specially, members of the NBS-LRR class of R genes encoding proteins containing a nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs) confer resistance to very different types of phytopathogens, such as bacteria, fungi, oomycetes, viruses, nematodes and aphids. This article reviewed the molecular events that occur up-stream of defense response pathway, specially, bacterial avr gene protein recognition mediated by NBS-LRR type R gene product in plant based on current research results of well studied model plants.

  • PDF

Proteome characterization of the liquid cultured tetraploid roots in Platycodon grandiflorum

  • Ko, Jung-Hee;Kwon, Soo Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.125-125
    • /
    • 2017
  • The roots of Platycodon grandiflorum are commonly used for treating bronchitis, asthma, tuberculosis, diabetes, and other inflammatory diseases. Since the molecular mechanism underlying the roots of the plant is unclear. Therefore, the present study was conducted to profile proteins from liquid cultured tetraploid roots of Platycodon grandi orum fl using high throughput proteome approach. Two-dimensional gels stained with CBB, a total of 659 differentially expressed proteins were identified from the liquid medium cultured tetraploid roots of which 32 proteins spots (${\geq}1.5-fold$) were sorted for mass spectrometry analysis. Out of these 32 proteins, a total of 15 proteins were up-regulated such as Serine carboxypeptidase-like 27, Transcription factor bHLH150, 60 kDa jasmonate-induced protein, Cytosolic Fe-S cluster assembly factor NBP35, Regulatory associated protein of TOR 2 and a total of 17 proteins were down-regulated such as Protein G1-like2, Phenylalanine ammonia-lyase, Fructokinase-2, Trihelix transcription factor GT-3a, Guanine nucleotide-binding protein alpha-1 subunit. However, the frequency distribution of identified proteins was carried out within functional categories based on molecular functions, cellular components, and biological processes. Functional categorization revealed that the most of the identified proteins from the explants were mainly associated with the nucleic acid binding, oxidoreductase, transferase activity, protein binding and hydrolase activity. In addition, the proteomic feedback of tetraploid roots of P. grandiflorum may potentially be used to understand the characteristics of proteins and their functions.

  • PDF

단백체를 이용한 애기장대 Cytokinin 유도 단백질의 분석 (Proteomic Analysis of Cytokinin Induced Proteins in Arabidopsis)

  • 양영실;차준영;네티 엘마와티;정민희;배동원;이창원;손대영
    • Journal of Plant Biotechnology
    • /
    • 제32권4호
    • /
    • pp.251-256
    • /
    • 2005
  • Cytokinin은 식물의 성장과 발달에 중요한 역할을 하는 필수 호르몬이다. Cytokinin의 작용 기작을 이해하기 위하여 단백체를 이용하여 cytokinin 관련 단백질들을 동정하였다. 대조구와 t-zeatin을 처리한 애기장대로부터 추출한 단백질을 이차원 전기영동하여 분석하였다. 발현양에 차이가 있는 단백질 spot들을 MALDI-TOF 단백질 질량분석기와 database 검색을 통하여 동정하였다. 그 결과 t-zeatin 처리에 의하여 발현이 증가하는 10개의 단백질과 감소하는 한 개의 단백질을 분리할 수 있었다. Cytokinin에 의하여 발현이 증가하는 단백질은 pollen allergen like protein, L-ascorbate peroxidase, tetrapyrrole methylase family protein, SGT1 protein homolog, disease resistance related protein, maternal embryogenesis control protein, paxneb related protein, gluthathione S-transferase, 그리고 IAA amino acid hydrolase homolog들로 밝혀졌다.