• Title/Summary/Keyword: plant-based proteins

Search Result 160, Processing Time 0.027 seconds

Production of Recombinant Human Interleukin-11 (IL-11) in Transgenic Tobacco (Nicotiana tabacum) Plants

  • Sadeghi, Abdorrahim;Mahdieh, Majid;Salimi, Somayeh
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.432-437
    • /
    • 2016
  • Interleukin-11 (IL-11) is a cytokine that plays a key regulatory role in the immune system. Recombinant human IL-11 (rhIL-11) exerts a preventative effect against apoptotic cell death and inhibits preadipocyte differentiation. IL-11 also is used to stimulate the bone marrow to produce platelets in order to prevent low platelets that may be caused by chemotherapy. Unfortunately, the high production cost of IL-11 associated. In this study, we investigated the feasibility of transgenic plants for the cost-effective production of rhIL-11. Production of rhIL-11 proteins in whole-plant expression system will be more economical when compared to the current E. coli based expression system. The human rhIL-11 gene was codon optimized to maximize plant host system expression. IL-11 expression vector under the control of a constitutive cauliflower mosaic virus 35S (CaMV 35S) promoter was introduced into tobacco by Agrobacterium-mediated transformation. The 5'-leader sequence (called ${\Omega}$) of tobacco mosaic virus (TMV) as a translational enhancer was added to construct. Transgenic tobacco plants expressing various levels of rhIL-11 protein were generated. Western blotting of the stably transformed lines demonstrated accumulation of the appropriately sized rhIL-11 protein in leaves. This research demonstrated the efficacy of using tobacco as an expression system for the production of rhIL-11.

Expression of the S glycoprotein of transmissible gastroenteritis virus (TGEV) in transgenic potato and its immunogenicity in mice

  • Ahn, Dong-Joo;Youm, Jung Won;Kim, Suk Weon;Yoon, Won Kee;Kim, Hyoung Chin;Hur, Tai-Young;Joung, Young Hee;Jeon, Jae-Heung;Kim, Hyun Soon
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.4
    • /
    • pp.217-224
    • /
    • 2013
  • Transgenic plants have been tested as an alternative host for the production and delivery of experimental oral vaccines. Here, we developed transgenic potatoes that express the major antigenic sites A and D of the glycoprotein S from transmissible gastroenteritis coronavirus (TGEV-$S_{0.7}$) under three expression vector systems. The DNA integration and mRNA expression level of the TGEV-$S_{0.7}$ gene were confirmed in transgenic plants by PCR and northern blot analysis. Antigen protein expression in transgenic potato was determined by western blot analysis. Enzyme-linked immunosorbent assay results revealed that based on a dilution series of Escherichia coli-derived antigen, the transgenic line P-2 had TGEV-$S_{0.7}$ protein at levels that were 0.015% of total soluble proteins. We then examined the immunogenicity of potato-derived TGEV-$S_{0.7}$ antigen in mice. Compared with the wild-type potato treated group and synthetic antigen treated group, mice treated with the potato-derived antigen showed significantly higher levels of immunoglobulin (Ig) G and IgA responses.

Recent Advances in the Studies of Self-Incompatibility of plants (식물의 자가불화합성, 최근의 진보)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.253-275
    • /
    • 1994
  • Many flowering plants possess genetically controlled self -incompatibility (SI) system that prevents inbreeding and promotes outcrosses. SI is usually controlled by a single, multiallelic S-locus. In gametophytically controlled system, SI results when the S-allele of the pollen is matched by one of the two S-alleles in the style, while in the sporophytic system self-incompatible reaction occurs by the interaction between the pistil genotype and genotype of, not the pollen, but the pollen parent In the former system the self-incompatible phenotype of pollen is determined by the haploid genome of the pollen itself but in the latter the pollen phenotype is governed by the genotype of the pollen parent along with the occurrence of either to-dominant or dominant/recessive allelic interactions. In the sporophytic type the inhibition reaction occurs within minutes following pollen-stigma contact, the incompatible pollen grains usually failing to germinate, whereas in gametophytic system pollen tube inhibition takes place during growth in the transmitting tissue of the style. Recognition and rejection of self pollen are the result of interaction between the S-locus protein in the pistil and the pollen protein. In the gametophytic SI the S-associated glycoprotein which is similar to the fungal ribonuclease in structure and function are localized at the intercellular matrix in the transmitting tissue of the style, with the highest concentration in the collar of the stigma, while in the sporophytic SI deposit of abundant S-locus specific glycoprotein (SLSG).is detected in the cell wall of stigmatic papillae of the open flowers. In the gametophytic system S-gene is expressed mostly at the stigmatic collar the upper third of the style length and in the pollen after meiosis. On the other hand, in the sporophytic SI S-glycoprotein gene is expressed in the papillar cells of the stigma as well as in e sporophytic tape is cells of anther wall. Recognition and rejection of self pollen in the gametophytic type is the reaction between the ribonuclease in the transmitting tissue of the style and the protein in the cytoplasm of pollen tube, whereas in the sporophytic system the inhibition of selfed pollen is caused by the interaction between the Sycoprotein in the wall of stigmatic papillar cell and the tapetum-origin protein deposited on the outer wall of the pollen grain. The claim that the S-allele-associated proteins are involved in recognition and rejection of self pollen has been made merely based on indirect evidence. Recently it has been verified that inhibition of synthesis of S$_3$ protein in Petunia inflata plants of S$_2$S$_3$ genotype by the antisense S$_3$ gene resulted in failure of the transgenic plant to reject S$_3$ pollen and that expression of the transgenic encoding S$_3$ protein in the S$_1$S$_2$ genotype confers on the transgenic plant the ability to reject S$_3$ pollen. These finding Provide direct evidence that S-proteins control the s elf-incompatibility behavior of the pistil.

  • PDF

Genetic Function Approximation and Bayesian Models for the Discovery of Future HDAC8 Inhibitors

  • Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.3 no.4
    • /
    • pp.15.1-15.11
    • /
    • 2011
  • Background: Histone deacetylase (HDAC) 8 is one of its family members catalyzes the removal of acetyl groups from N-terminal lysine residues of histone proteins thereby restricts transcription factors from being expressed. Inhibition of HDAC8 has become an emerging and effective anti-cancer therapy for various cancers. Application computational methodologies may result in identifying the key components that can be used in developing future potent HDAC8 inhibitors. Results: Facilitating the discovery of novel and potential chemical scaffolds as starting points in the future HDAC8 inhibitor design, quantitative structure-activity relationship models were generated with 30 training set compounds using genetic function approximation (GFA) and Bayesian algorithms. Six GFA models were selected based on the significant statistical parameters calculated during model development. A Bayesian model using fingerprints was developed with a receiver operating characteristic curve cross-validation value of 0.902. An external test set of 54 diverse compounds was used in validating the models. Conclusions: Finally two out of six models based on their predictive ability over the test set compounds were selected as final GFA models. The Bayesian model has displayed a high classifying ability with the same test set compounds and the positively and negatively contributing molecular fingerprints were also unveiled by the model. The effectively contributing physicochemical properties and molecular fingerprints from a set of known HDAC8 inhibitors were identified and can be used in designing future HDAC8 inhibitors.

Effects of polyamines on hydrogen peroxide-scavenging enzymes in radish seedling plants under paraquat stress (Paraquat 스트레스를 받는 무 (Raphanus sativus L) 유식물에서 H2O2 분해 효소에 대한 폴리아민의 효과)

  • Jin, Chang-Duck
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.149-156
    • /
    • 2009
  • Application of exogenous polyamines (PAs) reduced the paraquat (PQ)-induced cotyledon injuries in radish seedling plants with 1 mM spermidine (Spd) being the most effective protectant. PQ injury symptoms in the cotyledons, e.g., large accumulation of $H_2O_2$, and losses of fresh weight, chlorophyll, and proteins, were significantly alleviated. Likewise, analysis of $H_2O_2$-scavenging enzymes such as catalase (CAT) and guaiacol peroxidase (GPX) showed that pretreatment with Spd among PAs remarkably increased total CAT activity and strongly retarded PQ-induced rapid decline in total GPX activity. In a native gel assay, one CAT isozyme (CAT1) and two GPX isozymes (GPX1 and a newly synthesized GPX isozyme) proved to be more responsible for PQ tolerance, as manifested by the strong increases in their activities by Spd pretreatment. Based on these results, we can suggest that PAs (especially 1 mM Spd) may function as antioxidant protectors by invoking CAT and GPX enzymes which control the endogenous $H_2O_2$ level in radish cotyledons exposed to PQ.

Evolutionary Analyses of SSII-1 Gene Provides Insight into Its Domestication Signatures in Collected Rice Accessions

  • Thant Zin Maung;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.215-215
    • /
    • 2022
  • Starch synthase proteins (SSI, SSII and SSIII) in rice are mainly involved in amylopectin synthesis mediating its chain elongation, and the functional loss of SSII can increase amylose accumulation through decreasing of amylopectin chain proportions. For purposes of identifying functional haplotypes and evolutionary analyses of this gene, SSII-1, we investigated 374 rice accessions belonging to different subgroups of origins. We subsequently performed bioinformatic analyses on their variations through haplotyping, resequencing and structuring based on different classified populations. Haplotyping of cultivated rice accessions using genetic variations within SSII-1 genomic region of chromosome 10 revealed a total of 8 haplotypes, representing 6 functional haplotypes by 4 non-synonymous SNPs of three different exons (1, 4 and 10), which effect on protein structure. Higher nucleotide diversity value was found in wild group (0.0055) compared to any of cultivated subpopulations, of which aus showed the most reduction of diversity value (0.0003). Tajima's D analysis exhibits the most Tajima's D value only in admixture group (0.3600) which appears to be the cause of a sudden population contraction by rare alleles scarcity. A clear separation of some wild accessions from the admixed cultivated subpopulations was observed in PCA and phylogenetic analysis. Similar admixed pattern of population structure was estimated with an increased K values of 2 to 8 where genetic components of almost all cultivated subpopulations were shared with the wild which can also be subsequently estimated by very low FST-values by -0.011 (wild-aromatic) and -0.003 (wild-admixture).

  • PDF

Network pharmacoligical analysis for selection between Saposhnikoviae Radix and Glehniae Radix focusing on ischemic stroke (방풍(防風)과 해방풍(海防風) 중 뇌경색 연구에 더욱 적합한 약재 선정을 위한 네트워크 약리학적 분석)

  • Jin Yejin;Lim Sehyun;Cho Suin
    • Herbal Formula Science
    • /
    • v.31 no.3
    • /
    • pp.171-182
    • /
    • 2023
  • Objectives : Saposhnikoviae Radix (SR) and Glehniae Radix (GR) have been frequently used in traditional medicine to treat diseases related to 'wind' syndrome, but there have been cases where it has been mixed in a state where the plant of origin is not clear. In this study, to select materials for conducting preclinical cerebral infarction research, the network pharmacology analysis method was used to select suitable medicinal materials for the study. Methods : In this study, a Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) based network pharmacology analysis method was used, and oral bioavailability (OB), drug likeness (DL), Caco-2 and BBB permeability were utilized to select compounds with potential activity. For the values of each variable used in this study, OB ≥ 20%, DL ≥ 0.18, Caco-2 ≥ 0, and BBB ≥ -0.3 were applied, then networks of bioactive compounds, target proteins, and target diseases was constructed. STRING database was used to construct a protein-protein interaction network. Results : It was confirmed that SR rather than GR has various target proteins and target diseases based on network pharmacological analysis using TCMSP database. And it was analyzed that the bioactive compounds only in SR act more on neurovascular diseases, and both drugs are expected to be effectively used for cardiovascular diseases. Conclusions : In our future study, SR will be used in an ischemic stroke mouse model, and the mechanism of action will be explored focusing on apoptosis and cell proliferation.

Genetic mapping and sequence analysis of Phi class Glutathione S-transferases (BrGSTFs) candidates from Brassica rapa

  • Park, Tae-Ho;Jin, Mi-Na;Lee, Sang-Choon;Hong, Joon-Ki;Kim, Jung-Sun;Kim, Jin-A;Kwon, Soo-Jin;Zang, Yun-Xiang;Park, Young-Doo;Park, Beom-Seok
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.265-274
    • /
    • 2008
  • Glutathione S-transferases (GSTs) are multifunctional proteins encoded by a large gene family divided into Phi, Tau, Theta, Zeta, Lambda and DHAR classes on the basis of sequence identity. The Phi(F) and Tau(U) classes are plant-specific and ubiquitous. Their roles have been defined as herbicide detoxification and responses to biotic and abiotic stresses. Fifty-two members of the GST super-family were identified in the Arabidopsis thaliana genome, 13 members of which belong to the Phi class of GSTs (AtGSTFs). Based on the sequence similarities of AtGSTFs, 11 BAC clones were identified from Brassica rapa. Seven unique sequences of ORFs designated the Phi class candidates of GST derived from B. rapa (BrGSTFs) were detected from these 11 BAC clones by blast search and sequence alignment. Some of BrGSTFs were present in the same BAC clones indicating that BrGSTFs could also be clustered as usual in plant. They were mapped on B. rapa linkage group 2, 3, 9 and 10 and their nucleotide and amino acid sequences were highly similar to those of AtGSTFs. In addition, in silico analysis of BrGSTFs using Korea Brassica Genome Project 24K oligochip and microarray database for cold, salt and drought stresses revealed 15 unigenes to be highly similar to AtGSTFs and six of these were identical to one of BrGSTFs identified in the BAC clones indicating their expression. The sequences of BrGSTFs and unigenes identified in this study will facilitate further studies to apply GST genes to medical and agriculture purposes.

Simple and Rapid Detection for Rice stripe virus Using RT-PCR and Porous Ceramic Cubes (RT-PCR과 다공성 세라믹 큐브를 이용한 벼줄무늬잎마름바이러스 간편 진단)

  • Hong, Su-Bin;Kwak, Hae-Ryun;Kim, Mi-Kyeong;Seo, Jang-Kyun;Shin, Jun-Sung;Han, Jung-Heon;Kim, Jeong-Soo;Choi, Hong-Soo
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.321-325
    • /
    • 2015
  • A rapid and simple RT-PCR diagnosis method for detection of Rice stripe virus (RSV), one of major virus infecting rice, was developed using porous ceramic cubes in this study. The porous ceramic cube can rapidly absorb biological molecules such as small-sized proteins and nucleic acid fragments into its pores. We examined whether this ability of porous ceramic cubes could be applied for isolating viral nucleic acids or particles from the RSV- infected plant tissues. In this study, we found that the porous ceramic cube was capable of absorbing a detection level of viruses from the rice tissues infected with RSV and established RT-PCR-based RNA diagnosis method using porous ceramic cubes.

Virus-induced Silencing of the WRKY1 Transcription Factor that Interacts with the SL1 Structure of Potato virus X Leads to Higher Viral RNA Accumulation and Severe Necrotic Symptoms

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.40-48
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) replication is precisely regulated by regulatory viral sequences and by viral and/or host proteins. In a previous study, we identified a 54-kDa cellular tobacco protein that bound to a region within the first 46 nucleotides (nt) of the 5' non-translated region (NTR) of the viral genome. Optimal binding was dependent upon the presence of an ACCA sequence at nt 10-13. To identify host factors that bind to 5' NTR elements including AC-rich sequences as well as stemloop 1 (SL1), we used northwestern blotting and matrixassisted laser desorption/ionization time-of-flight mass spectrometry for peptide mass fingerprinting. We screened several host factors that might affect PVX replication and selected a candidate protein, $Nicotiana$ $tabacum$ WRKY transcription factor 1 (NtWRKY1). We used a $Tobacco$ $rattle$ $virus$ (TRV)-based virus-induced gene silencing (VIGS) system to investigate the role of NtWRKY1 in PVX replication. Silencing of $WRKY1$ in $Nicotiana$ $benthamiana$ caused lethal apical necrosis and allowed an increase in PVX RNA accumulation. This result could reflect the balancing of PVX accumulation in a systemic $N.$ $benthamiana$ host to maintain PVX survival and still produce a suitable appearance of mosaic and mottle symptoms. Our results suggest that PVX may recruit the WRKY transcription factor, which binds to the 5' NTR of viral genomic RNA and acts as a key regulator of viral infection.