• 제목/요약/키워드: plant uptake

검색결과 825건 처리시간 0.036초

유기성 폐기물 장기시용 후 토양에서 무 (Raphanus sativus cv. sodamaltari)의 중금속 흡수 (Uptake of Heavy Metals by Radish (Raphanus sativus cv. sodamaltari) from the Soils after Long-Term Application of Organic Wastes)

  • 권순익;장연아;김계훈;정구복;김민경;황해;채미진;김권래
    • 한국토양비료학회지
    • /
    • 제46권1호
    • /
    • pp.65-72
    • /
    • 2013
  • This study was carried out to understand the long-term effects of organic waste treatments on the fate of heavy metals in soils originated from the organic wastes and consequent uptake of heavy metals by plant, together with examination of changes in soil properties and plant growth performance. In this study, the soils treated with three different organic wastes (municipal sewage sludge, alcohol fermentation processing sludge, pig manure compost) at three different rates (12.5, 25.0, 50.0 ton $ha^{-1}yr^{-1}$) for 7 years (1994 - 2000) were used. To see the long-term effect, plant growth study and soil examination were conducted twice in 2000 and 2010, respectively. There was no additional treatments of organic wastes for 10 years after the organic waste treatment for 7 years. Compared to plant growth examination conducted in 2000 using radish (Raphanus sativus cv. sodamaltari), it appeared that height, root length and diameter, fresh weight of radish grown in 2010 decreased in the plots treated with municipal sewage sludge and alcohol fermentation processing sludge and that the extent of decrease was higher with increase of sludge application rates. On the other hand, pig compost treatment increased plant height, root length and diameter, fresh weight with increasing application rates. Cu and Pb concentrations in radish root and leaves increased in 2010 compared to those in 2000 while Ni concentrations in root and leaves decreased. Zn concentration was increased only in the soils treated with pig manure compost. Multiple regression analysis among heavy metal species fractions in soils, soil pH, and metal concentrations in radish root and leaves indicated that the metal uptake by radish was governed mainly by the soil pH and subsequent increase of available heavy metal fractions in soils with organic waste treatments.

토양(土壤)-식물계(植物界)에 대(對)한 방사성핵종(放射性核種)의 거동(擧動)에 관(關)한 연구(硏究);I. 대두작물(大豆作物)에 의(依)한 Cs-137의 흡수이행(吸收移行) (Studies on the Behaviour of Radionuclides in the Soil-Plant System;1) On the Uptake of Cesium-137 by Soybean)

  • 류준;김재성;이영일
    • 한국환경농학회지
    • /
    • 제2권1호
    • /
    • pp.30-34
    • /
    • 1983
  • 원자력시설(原子力施設)에서 방출(放出)될 수 있는 주요 핵종중(核種中)에서 $Cs^{137}$을 인위적으로 토양(土壤)에 처리(處理)하여 작물체(作物體)에 흡수(吸收), 이행(移行) 및 농축관계(濃縮關係)를 구명(究明)하고자 pot(토양(土壤)10㎏)당(當) $0.5{\sim}60{\mu}Ci$로 처리(處理)한 후 대두(大豆)를 재배(栽培)하여 다음과 같은 결과(結果)를 얻었다. 1) 공시(供試)된 $Cs^{137}$의 상기(上記) 처리농도(處理濃度)에서는 대두작물(大豆作物)의 생장저해(生長沮害) 영향을 볼 수 없었다. 2) 처리농도(處理濃度) 증가(增加)에 따라 대두작물(大豆作物)의 $Cs^{137}$흡수(吸收)는 증가(增加)하였으나 K함양(含量)은 감소(減少)하였으므로 두 이온간(間)의 길항성(拮抗性)을 보였다. 3) 생육시기별(生育時期別) 흡수량(吸收量)은 pod 형성기(形成期)까지는 증가(增加)하다 수확기(收穫期)에는 감소(減少)하는 경향을 보였고 종실(種實)에 비해 경엽부(莖葉部)에 높은 축적(蓄積)을 보였다. 4) 대두작물(大豆作物)의 $Cs^{137}$ 흡수률(吸收率)은 $0.069{\sim}0.005$의 범위로 $Cs^{137}$처리농도(處理濃度)에 따라서 감소(減少)하였고, 이행률(移行率)은 평균(平均) 38.6%였고, 종실(種實)에의 농축계수(濃縮係數) 또한 농도(濃度)의 증가(增加)에 따라 감소(減少)하였으며 $20{\mu}Ci$처리구(處理區)를 기준(基準)으로 할 경우 농축계수는 0.04 였다.

  • PDF

양액재배 절화장미의 생육단계별 N, P, K 흡수 및 체내성분 함량의 변화 (Change in Uptake and Tissue Contents of N, P, and K at Different Growth Stages in Hydroponically-Grown Cut Roses)

  • 최경이;조명환;서태철;노미영;이한철;이시영
    • 생물환경조절학회지
    • /
    • 제17권4호
    • /
    • pp.247-251
    • /
    • 2008
  • 이전 수확으로부터 다음 수확기까지 35일 동안 생육 단계별 장미의 양분 흡수와 식물체내 재분배 및 이동 양상을 구명하여 수경재배 시 생육단계별 급액관리 기준을 마련하고자 본 시험을 수행하였다. 양분의 흡수는 증산량에 관계없이 작물의 생장단계에 따라서 다른 특성을 나타내었다. 주당 1일 N의 흡수는 생육초기 5.6mmol에서 감소하여 15일째에는 4.0mmol로 최소가 된 이후, 점차 증가하며 35일째에는 10.3mmol로 증가하였다. 묵은 지상부 조직의 N과 P 농도는 15일 이후 점차 감소하였으며, K는 20일에 최소가 되었다가 점차 증가하는 경향이었다. 뿌리에서는 N과 K는 15일에 최소가 되었다가 30일에 최대가 되었다가 35일째는 감소하였다. P는 N과 K의 농도 변화와 거의 반대 패턴이었다.

KNF-1002의 경엽 침투성과 부착량 증진에 의한 보리 흰가루병 방제 효과 (Fungicidal Activity Enhancement of KNF-1002 Against Barley Powdery Mildew by Facilitating Foliar Uptake and Deposition)

  • 유주현;최경자
    • 농약과학회지
    • /
    • 제14권3호
    • /
    • pp.272-279
    • /
    • 2010
  • KNF-1002는 strobilurin계 합성 살균 활성물질로 여러 가지 식물병에 대하여 예방효과가 우수한 것으로 보고되었지만, 작물의 경엽 침투성이 매우 약하여 보랴 흰가루병 등에 대한 치료효과는 거의 없는 것으로 나타났다. 따라서 Congo Red 방법을 이용하여 KNF-1002의 보리와 밀의 경엽 침투성과 부착량을 동시에 증진할 수 있는 물질을 선발하고 이를 이용하여 보리 흰가루병에 대한 방제 효과가 증진된 제제를 개발하고자 하였다. KNF-1002를 100 mg/L 함유하는 acetone 수용액으로 보리 잎에 분무하였을 때 24시간 동안 유효성분의 0.1%가 침투하였지만, heptaethylene glycol monooctadecenyl cther(OE-7), dodccacthylene glycol monohexadecyl ethcr(CE-12) 등의 계명활성제를 500 mg/L 첨가하였을 때는 침투율이 최고 48.5%까지 증가하였다. 계면활성제를 함유하는 KNF-1002 분무용 용액은 밀에 대해서도 침투성과 부착성을 매우 증진하였으며, 그 효과는 polyoxyethylene계 계면활성제의 지방족 알콜의 종류와 ethylene oxide 부가몰수에 따라 달랐다. 침투성과 부착량을 동시에 증진할 수 있는 보조제로써 nonacthylene glycol monododccyl ether(LE-9)틀 함유하는 KNF-1002 제제는 보리 흰가루병에 대한 방제효과를 뚜렷하게 증진하는 것으로 나타났다.

Yield and Nitrogen Uptake of Corn in Corn after Soybean Cropping

  • Seo, Jong-Ho;Lee, Ho-Jin;Lee, Jin-Wook
    • 한국작물학회지
    • /
    • 제46권4호
    • /
    • pp.266-271
    • /
    • 2001
  • Soybean can produce high-N residue due to N-fixation, so soybean rotation may increase yield of subsequent corn and reduce N fertilizer on the corn fairly. To find out the contribution of nitrogen to subsequent corn following soybean cultivation, soil nitrate, corn yield, and nitrogen uptake were measured for three continuous corn cropping years after soybean rotation. Three N rates of 0, 80, and 160 kg/ha were applied to three continuous corn following soybean cropping. At 6-leaf stage, soil nitrate amount at the soil depth of 0-30cm ranged from 60 to 80 kgN/ha higher in the first corn cropping year than that in the second and third corn cropping years. Judging from corn N status such as SPAD value, N concentration of ear-leaf and stover at silking stage, N contribution of previous soybean to corn in the first corn year was N fertilizer of approximately 80 kg N/ha. Stover N uptake at silking stage increased from 47 to 52 kg N/ha at the 0, and 80 kg N/ha of N rates in the first corn cropping year compared with those in the second and third corn cropping years. Corn grain yield at the 0 kg N/ha of N rate was 6-7 ton/ha higher in the first corn cropping year than that in the second and third corn cropping years, respectively. When compared the first corn year following soybean cropping with the second and third corn cropping years, N uptake of grain and stover at harvest with low N rates such as 0 and 80 kg N/ha increased from 45 to 67kg N/ha, from 35 to 60 kg N/ha, respectively. N uptake of whole plant by soybean rotation increased from 93 to 118 kg N/ha in the first year compared with that in the second and third corn cropping years. However, the N contribution by soybean cropping was small in the second and third continuous corn cropping years. Therefore, it was concluded that the nitrogen fertilizer of 80-100 kg N/ha in the first corn cropping year could be saved by soybean rotation and annual alternative corn-soybean rotation could be the best rotation system.

  • PDF

단풍잎돼지풀 기반 바이오차를 이용한 비소 및 중금속 오염 농경지의 안정화 (Stabilization of Agricultural Soil Contaminated by Arsenic and Heavy Metals using Biochar derived from Buffalo Weed)

  • 고일하;김정은;김지숙;박미선;강대문;지원현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.87-100
    • /
    • 2016
  • Biochar, which has high alkalinity, has widely studied for amendment of soil that contaminated with heavy metals. The aim of this study is assessment of amendment for arsenic and heavy metals contaminated acidic agricultural soil using biochar that derived from buffalo weed (A. trifida L. var. trifida). Pot experiments were carried out including analysis of soil solution, contaminants fractionation, soil chemical properties and plant (lettuce) uptake rate. Arsenic and heavy metals concentrations in soil solution showed relatively low in biochar added experiments when compared to the control. In the heavy metals fractionation in soil showed decrease of exchangeable fraction and increase of carbonates fraction; however, arsenic fractionations showed constant. Soil chemical properties indicated that biochar could induce recovery of soil quality for plant growth in terms of soil alkalinity. However, phosphate concentration in biochar added soil decreased due to Ca-P precipitation by exchangeable calcium from biochar. Arsenic and heavy metals uptake rate of plant in the amended experiment decreased to 50% when compared to the control. Therefore biochar derived from buffalo weed can be used as amendment material for agricultural soil contaminated with arsenic and heavy metals. Precipitation of As-Ca and metal-carbonates are major mechanisms for soil amendment using char.

Effect of Active Nutrient Uptake on Heading Under Low Temperature in Rice

  • Hwang, Woon-Ha;Kang, Jea Ran;Baek, Jung-Sun;An, Sung-Hyun;Jeong, Jae-Heok;Jeong, Han-Yong;Lee, Hyen-Seok;Yun, Jong-Tak;Lee, Gun-Hwi;Choi, Kyung-Jin
    • 한국작물학회지
    • /
    • 제61권3호
    • /
    • pp.163-170
    • /
    • 2016
  • Heading time is important element for yield and quality in crops. Among day length and temperature which influence on heading, temperature effect has not been investigated well. To investigate temperature effect on heading, heading date and plant growth characters were checked under the low and high temperature conditions in short day length. Analyzing heading date of six Korean varieties under the high and low temperature condition, heading date of varieties were delayed under low temperature. In the low temperature condition, dry weight and area of leaf were reduced. Varieties showing more delay of heading under low temperature also showed more reduction in leaf area. After selecting three varieties showing significant difference in leaf growth and heading date under different temperature conditions, nutrient contents of plant were analyzed. Nitrogen content was reduced in leaf and shoot under the low temperature condition. OsNRT2.3, nitrate transporter, was significantly down regulated in varieties showing more heading delay. Available phosphate content was decreased in leaf, but increased in shoot due to reduction of phosphate mobility. OsPT1, phosphate transporter regulating phosphate uptake, was more down regulated in varieties showing more heading delay. OsPT6, phosphate transporter regulating phosphate transport in plant, was also significantly down regulated in those varieties. With these data, we expected that active nitrogen and available phosphate uptake and transport in plant would increase leaf growth then might reduce heading delay under the low temperature condition.

Effects of Renewal Pattern of Recycled Nutrient Solution on the Ion Balance in Nutrient Solutions and Root Media and the Growth and Ion Uptake of Paprika (Capsicum annuum L.) in Closed Soilless Cultures

  • Ko, Myat Thaint;Ahn, Tae In;Shin, Jong Hwa;Son, Jung Eek
    • 원예과학기술지
    • /
    • 제32권4호
    • /
    • pp.463-472
    • /
    • 2014
  • Ion imbalance in recycled nutrient solutions is caused by selective ion uptake of plants, which occurs at different rates in different growth stages. The objectives of this study were to investigate the ion balances in both recycled nutrient solutions and rockwool media using different renewal patterns for the nutrient solutions, and to analyze the subsequent effects on uptake of water and nutrients. Over 12 weeks of paprika cultivation, two different renewal patterns (week units) of 6-4-2 and 8-2-2 weeks were compared with a constant renewal pattern of 4-4-4 weeks (control). The nutrient solution in the reservoir tank was constantly maintained at EC $2.5dS{\cdot}m^{-1}$ and pH 5.5-6.5. The changes in the ion balance with the 4-4-4 week pattern were smaller than those with the other treatments. In the early growth stage, however, the ion balances similarly changed among all treatments. Greater changes were subsequently observed for the 6-4-2 week pattern. Although fruit yield and shoot fresh weight of paprika were the lowest with 6-4-2 renewal pattern, no significant differences were observed. Our results indicate that renewal intervals can be extended in consideration of growth stage for more efficient and practical operations in closed soilless cultures.