• Title/Summary/Keyword: plant uncertainty

Search Result 314, Processing Time 0.026 seconds

RISK-INFORMED REGULATION: HANDLING UNCERTAINTY FOR A RATIONAL MANAGEMENT OF SAFETY

  • Zio, Enrico
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.327-348
    • /
    • 2008
  • A risk-informed regulatory approach implies that risk insights be used as supplement of deterministic information for safety decision-making purposes. In this view, the use of risk assessment techniques is expected to lead to improved safety and a more rational allocation of the limited resources available. On the other hand, it is recognized that uncertainties affect both the deterministic safety analyses and the risk assessments. In order for the risk-informed decision making process to be effective, the adequate representation and treatment of such uncertainties is mandatory. In this paper, the risk-informed regulatory framework is considered under the focus of the uncertainty issue. Traditionally, probability theory has provided the language and mathematics for the representation and treatment of uncertainty. More recently, other mathematical structures have been introduced. In particular, the Dempster-Shafer theory of evidence is here illustrated as a generalized framework encompassing probability theory and possibility theory. The special case of probability theory is only addressed as term of comparison, given that it is a well known subject. On the other hand, the special case of possibility theory is amply illustrated. An example of the combination of probability and possibility for treating the uncertainty in the parameters of an event tree is illustrated.

A sensitivity study on the PDFs treating uncertainties in severe accidents for pressurized heavy water reactors

  • Roxana-Mihaela Nistor-Vlad;Daniel Dupleac;Andrei-Razvan Budu-Stanila
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4280-4288
    • /
    • 2024
  • This research article introduces a study regarding the uncertainties treatment during severe accidents for Pressurized Heavy Water Reactors (PHWRs). The present study is focused upon the unmitigated Station BlackOut (SBO) accident analysis for a CANada Deuterium Uranium (CANDU) type reactor emphasizing the impact of the uncertainties treatment on the relevant key timings of the SBO accident progression through different approaches for the uncertainty parameters' Probabilistic Distribution Functions (PDFs). A comparison between the sensitivity analysis results is provided in the present research study. The uncertainty analysis is performed with the RELAP/SCDAPSIM code with the Integrated Uncertainty Analysis (IUA) package from the code. Results from the research would support the advancements on the best-practices for uncertainty analyses with respect to the parameter's uncertainties distribution functions. Data dispersion is a key element for the realistic quantification of uncertainties in nuclear power plant safety analyses, including severe accidents.

Reliability Evaluation Considering the Information and Human Factors in the Advanced Pressurized water Reactor 1400MWe under Uncertainty (신형경수로 1400에서 정보와 인적요인을 고려한 신뢰성 평가)

  • Kang Young - Sig
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.25-30
    • /
    • 2002
  • The problem of qualitative reliability system is very important issue in the digitalized nuclear power plant, because the failure of its system brings about extravagant economic loss, extensive environment destruction, and fatal damage of human. Therefore this study is to develop the reliability evaluation model through the normalized scoring model by the quantitative and qualitative factors considering the advanced safety factors In the Advanced Pressurized water Reactor 1400MWe(APR 1400) under uncertainty Especially, the qualitative factors considering the information and human factors for the systematic and rational justification have been closely analyzed. The reliability evaluation model can be simply applied in real fields in order to minimize the industrial accident and human error in the digitalized nuclear power plant.

  • PDF

A Study on Applicability of Ultrasonic Flowmeter to Feedwater Flow Measurements in Nuclear Power Plants (원자력발전소의 급수유량 측정에 대한 초음파유량계의 적용성 연구)

  • Yu Sung-Sik;Park Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.57-65
    • /
    • 2003
  • The measurement uncertainties of an ultrasonic flowmeter were analyzed to evaluate its applicability to the measurement of the steam generator feedwater flow-rate in a nuclear power plant. The analyses of measurement uncertainties of a reactor power were also performed with the analyses of feedwater flow measurement uncertainties. Two ultrasonic flowmeters based on a cross-correlation technique and a transit time method were used in this study. The ultrasonic flowmeters were installed on a feedwater pipe line of a typical 1000 MWe Korea-standardized nuclear power plant to take the necessary data. The results have shown that the measurement uncertainties of the ultrasonic flowmeters are adequately smaller than those or a venturi meter. The research has also indicated that the measurement uncertainties of the reactor power based on the ultrasonic flowmeter uncertainties are sufficiently bounded by the uncertainty range usually assumed in nuclear safety analyses.

Design of a Robust STATCOM Supplementary Controller to Suppress SSR in Series-compensated Line (직렬 보상 선로에서의 SSR 억제를 위한 강인한 STATCOM 보조 제어기의 설계)

  • Seo, Jang-Cheol;Moon, Seung-Ill;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1029-1031
    • /
    • 1999
  • This paper presents an $H_{\infty}$ based robust STATCOM supplementary controller design to suppress the SSR in series-compensated line. This controller is designed to have the robust stability against the plant model uncertainty. Time domain simulations using a nonlinear system model show that the proposed STATCOM supplementary controller can suppress the SSR efficiently against the plant model uncertainty

  • PDF

Reliability Assessment by the Scoring Model for the Advanced Pressurized water Reactor 1400MWe Project Selection under Uncertainty (신형경수로 1400을 위해 점수산정 모형에 의한 신뢰성 평가)

  • 강영식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.6
    • /
    • pp.23-35
    • /
    • 2002
  • The problem of system reliability is very important issue in the digitalized nuclear power plant, because the failure of its system brings about extravagant economic loss, environment destruction, and fatal damage of human. Therefore the purpose of this study has developed the reliability evaluation model through the scoring model by the quantitative and qualitative factors in order to justify the evaluation considering the advanced safety factors in the Advanced Pressurized water Reactor 1400MWe(APR 1400MWe) under uncertainty. Especially, the qualitative factors considering the human, information control, and quality factors for the systematic and rational justification have been closely analyzed. The proposed model can be simply applied in real fields in order to minimize the industrial accidents in the digitalized nuclear power plant.

Design of a Robust TCSC Supplementary Controller to Suppress SSR in FACTS (유연송전시스템(FACTS)에서의 SSR 억제를 위한 강인한 TCSC 보조 제어기의 설계)

  • Seo, Jang-Cheol;Kim, Tae-Hyun;Moon, Seung-Ill;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.884-886
    • /
    • 1998
  • This paper presents an LQG based robust TCSC supplementary controller design to suppress the SSR in the FACTS. This controller is designed to have the robust stability against the plant model uncertainty. The robust stability is guaranteed using the $\mu$ analysis. Time domain simulations using a nonlinear system model show that the proposed TCSC supplementary controller can suppress the SSR efficiently against the plant model uncertainty.

  • PDF

ASSESSMENT OF THE SAFETY OF ULCHIN NUCLEAR POWER PLANT IN THE EVENT OF TSUNAMI USING PARAMETRIC STUDY

  • Kim, Ji-Young;Kang, Keum-Seok
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.175-186
    • /
    • 2011
  • Previous evaluations of the safety of the Ulchin Nuclear Power Plant in the event of a tsunami have the shortcoming of uncertainty of the tsunami sources. To address this uncertainty, maximum and minimum wave heights at the intake of Ulchin NPP have been estimated through a parametric study, and then assessment of the safety margin for the intake has been carried out. From the simulation results for the Ulchin NPP site, it can be seen that the coefficient of eddy viscosity considerably affects wave height at the inside of the breakwater. In addition, assessment of the safety margin shows that almost all of the intake water pumps have a safety margin over 2 m, and Ulchin NPP site seems to be safe in the event of a tsunami according to this parametric study, although parts of the CWPs rarely have a margin for the minimum wave height.

Robust Adaptive Control for the System with Unmodelled Dynamics (비모형화 특성을 갖는 시스템의 견고성 적응제어)

  • 김성덕;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.9
    • /
    • pp.670-677
    • /
    • 1987
  • The robustness and stability properties for a model reference adaptive control system with plant uncertainty are considered in this paper, using input-output stability theory. An error model for a typical adaptive control structure is extended to unmodelled dynamics in the plant model and then, the strictly positive real condition for global stability is examined. In general, since this condition can be easily violated due to unmodelled dynamics, a modified compensator which can be guaranteed Hev e SPR is introduced in the plant model and the effectiveness for the given structure is also given.

  • PDF

$H_\infty$ Controller Design Via the Reformulation of the Standard Plant (표준플랜트의 재구성을 통한 $H_\infty$ 제어기설계)

  • 박준곤;방경호;엄태호;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.486-490
    • /
    • 1993
  • This paper presents an improved algorithm which enables to find a suboptimal $H^{\infty}$ controller. In the $H^{\infty}$ control problem with output multiplicative uncertainty, the Glover-Doyle algorithm has sorne constraints for the standard plant. The proposed algorithm removes them by reformulating the standard plant. We show the validity of this algorithm by investigating the variation of norm-bound.d.

  • PDF