• Title/Summary/Keyword: plant uncertainty

Search Result 314, Processing Time 0.027 seconds

Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 (상세화된 CMIP5 기후변화전망의 다중모델앙상블 접근에 의한 농업기후지수 평가)

  • Chung, Uran;Cho, Jaepil;Lee, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.108-125
    • /
    • 2015
  • The agro-climatic index is one of the ways to assess the climate resources of particular agricultural areas on the prospect of agricultural production; it can be a key indicator of agricultural productivity by providing the basic information required for the implementation of different and various farming techniques and practicalities to estimate the growth and yield of crops from the climate resources such as air temperature, solar radiation, and precipitation. However, the agro-climate index can always be changed since the index is not the absolute. Recently, many studies which consider uncertainty of future climate change have been actively conducted using multi-model ensemble (MME) approach by developing and improving dynamic and statistical downscaling of Global Climate Model (GCM) output. In this study, the agro-climatic index of Korean Peninsula, such as growing degree day based on $5^{\circ}C$, plant period based on $5^{\circ}C$, crop period based on $10^{\circ}C$, and frost free day were calculated for assessment of the spatio-temporal variations and uncertainties of the indices according to climate change; the downscaled historical (1976-2005) and near future (2011-2040) RCP climate sceneries of AR5 were applied to the calculation of the index. The result showed four agro-climatic indices calculated by nine individual GCMs as well as MME agreed with agro-climatic indices which were calculated by the observed data. It was confirmed that MME, as well as each individual GCM emulated well on past climate in the four major Rivers of South Korea (Han, Nakdong, Geum, and Seumjin and Yeoungsan). However, spatial downscaling still needs further improvement since the agro-climatic indices of some individual GCMs showed different variations with the observed indices at the change of spatial distribution of the four Rivers. The four agro-climatic indices of the Korean Peninsula were expected to increase in nine individual GCMs and MME in future climate scenarios. The differences and uncertainties of the agro-climatic indices have not been reduced on the unlimited coupling of multi-model ensembles. Further research is still required although the differences started to improve when combining of three or four individual GCMs in the study. The agro-climatic indices which were derived and evaluated in the study will be the baseline for the assessment of agro-climatic abnormal indices and agro-productivity indices of the next research work.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

Preliminary Analysis of the Thermal-Hydraulic Performance of a Passive Containment Cooling System using the MARS-KS1.3 Code (MARS-KS1.3을 이용한 피동원자로건물냉각계통 열수력 성능 예비분석)

  • Bae, Sung Hwan;Ha, Tae Wook;Jeong, Jae Jun;Yun, Byong Jo;Jerng, Dong Wook;Kim, Han Gon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.96-108
    • /
    • 2015
  • A passive containment cooling system has been designed to remove the heat inside a containment during accidents without external power supply. In this work, the PCCS was introduced in the APR1400 plant to replace the containment spray system and, then, the thermal-hydraulic performance of the PCCS was analyzed using the system thermal-hydraulic computer code, MARS. A double-ended cold-leg break accident, which is known to induce the maximum pressure in the containment, is simulated, where the thermal hydraulics of the PCCS, the reactor coolant system, and the containment are simultaneously simulated. The results of the calculations showed that the PCCS can replace the existing spray system and that the containment building and its internal structure also play a very important role for the heat removal during the accident. Some sensitivity calculations were carried out to evaluate the model uncertainty and the effects of design parameters. The limitations of the PCCS are also discussed.

Optimal Design of Batch-Storage Network Including Uncertainty and Waste Treatment Processes (불확실한 공정과 불량품 처리체계를 포함하는 공정-저장조 망 최적설계)

  • Yi, Gyeongbeom;Lee, Euy-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.585-597
    • /
    • 2008
  • The aim of this study was to find an analytic solution to the problem of determining the optimal capacity (lot-size) of a batch-storage network to meet demand for a finished product in a system undergoing random failures of operating time and/or batch material. The superstructure of the plant considered here consists of a network of serially and/or parallel interlinked batch processes and storage units. The production processes transform a set of feedstock materials into another set of products with constant conversion factors. The final product demand flow is susceptible to short-term random variations in the cycle time and batch size as well as long-term variations in the average trend. Some of the production processes have random variations in product quantity. The spoiled materials are treated through regeneration or waste disposal processes. All other processes have random variations only in the cycle time. The objective function of the optimization is minimizing the total cost, which is composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis, the PSW (Periodic Square Wave) model, provides a judicious graphical method to find the upper and lower bounds of random flows. The advantage of this model is that it provides a set of simple analytic solutions while also maintaining a realistic description of the random material flows between processes and storage units; as a consequence of these analytic solutions, the computation burden is significantly reduced.

Soil Resilience and Threat Factors Related to Agricultural Environment (농업환경 분야에서의 토양 리질리언스와 그 위협 요인)

  • Kim, Min-Suk;Min, Hyun-Gi;Hyun, Seung-Hun;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.26-42
    • /
    • 2020
  • Soils are the basis for plant rooting and ecosystem creation, the site of life for humankind, and require much time for their creation, so there will be no disagreement about the importance and necessity of soil conservation and management. Soil resilience is the ability of soils to maintain their original structure and function (resistance and recovery) from various kinds of disturbances, and is an indispensable field of study that prepares for a future with high uncertainty and unpredictability. Therefore, this study summarizes the concept and necessity of soil resilience, which is not yet widely known in Korea, and the contents of previous studies were reviewed. This study was carried out with the aim of contributing to lowering the threshold for entry into resilience research for domestic and foreign researchers who are new to soil resilience. In the first part of this study, we introduced resilience and soil resilience, and in the second part, we summarized the main causes of stress or disturbance that have been studied by many soil resilience researches. This makes it easy to find the references authors need. It is virtually impossible to find the same soil environment because there is no same area on the earth with all the same rock, climate, human activity, and culture, suggesting that each soil has its own uniqueness. Therefore, the researcher who wants to utilize the results of this study should take into consideration the specificity of the soil and the region to which the soil resilience is introduced, and modify it if necessary. In addition, efforts should be made to strengthen the network of soil resilience researchers to create a basis for sharing and actively utilizing the research results.

Emergence of New Business Mode in the Chinese Water Market - Hefei Wangxiaoying Wastewater TOT Project -

  • Lee, Seung-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.20-20
    • /
    • 2011
  • The purpose of this research aims to evaluate the emergence of new business mode in the Chinese water market since the mid-2000s - Transfer-Operate-Transfer(TOT) Projects. The study pays special attention to the case of the Hefei Wangxiaoying Wastewater Treatment TOT Project, which was awarded to the consortium of Berlin Water International and its Chinese partner in late 2004. The consortium secured an exclusive operating right for 23 years on the basis of a TOT scheme and would take responsibility of all the profits and losses in the operation of the plant. The total investment for the transfer amounted to RMB 491 million(US$70 million). The price was more than 288% of the original value, RMB 170 million (US$24 million). The project can be regarded as a successful case because of the following three causes. First, the Hefei government followed a series of standardized procedures in the international bidding, which ignited best-performed international players' competition for the project. Second, the project will bring in cutting-edge operation skills and management know-how. Third, the government succeeded in raising public asset values, and thanks to this, the government is able to consider other similar projects not only in the water sector but also other sectors in public utility services. Nevertheless, Berlin Water's point of view, there are several challenges. First, the company took a risk to pay such a large amount of cash to the Hefei government. Although such premium can be recouped in the operation period of 23 years, whether or not the company would be able to recover the initial investment and realize profits is in question due to an uncertainty of socio-political circumstances in China. Second, Berlin Water should expect a steep rise of water tariffs over the contract period in order to get the investment back. Water pricing is still a sensible matter to Chinese authorities, and therefore, it is uncertain if such rise of water tariffs would be possible. Third, the TOT mode leads to creation of a large amount of cash to government officials, which might have caused corruption between those who are involved in TOT deals. Then, the final contract fee would soar, which often results in the burden of normal customers. As discussed, the TOT mode has drawn much attention of foreign investors as a new alternative to enter into the Chinese water market. But it is important to note that foreign investors should be aware of possible risks in water TOT projects, which reflects some features of the Chinese political economy landscape and social norms. The Hefei case indicates that benefits can overshadow risks in TOT projects, which will continue to attract foreign investors that are dedicated to establishing their strongholds in the Chinese water market.

  • PDF

Development of Optimal Urban Runoff System : I. Study of Inflow/Infiltration Estimation Considering AHP in Urban Runoff System (최적 도시유출시스템의 개발 : I. 도시유출시스템에서의 AHP를 고려한 불명수량 산정에 대한 연구)

  • Lee, Jung-Ho;Kim, Joong-Hoon;Kim, Hung-Soo;Kim, Eung-Seok;Jo, Deok-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.195-206
    • /
    • 2004
  • One of the main factors which reduces the efficiency of a sewage treatment plant is the Inflow/Infiltration(Ⅰ/Ⅰ) in the sewer First we must calculate the quantity of Ⅰ/Ⅰ via the investigation of each sewer to establish the reduction plan of Ⅰ/Ⅰ. However, in Korea, we apply the results of a surveyed sample to the entire study area to establish the reduction plan of Ⅰ/Ⅰ. This methodology just considers the total Ⅰ/Ⅰ for the entire study area but it does not consider the quantity of Ⅰ/Ⅰ for the individual sewer systems. Therefore, we may need the model to consider the Ⅰ/Ⅰ in the individual sewer systems and we develop the model to calculate the Ⅰ/Ⅰ that happen in urban sewer systems. We estimate the Ⅰ/Ⅰ of individual systems by the developed model and the estimated Ⅰ/Ⅰ are utilized as the basic data for the establishment of Ⅰ/Ⅰ reduction plan. The observed Ⅰ/Ⅰ for the entire study area is distributed into the individual sewer systems according to their defect states. Here, the weights of defect elements are calculated using AHP(Analytic Hierarchy Process) and we perform the uncertainty analysis for considering the errors using MCS(Monte Carlo Simulation).

Health Risk Assessment of Disinfection By-products by Chlorination in Tap Water Ingestion (수도수중 염소 소독부산물로 인한 건강위해성 평가에 관한 연구 - 서울시 수도수중 Trihalomethanes 및 Haloaceticnitriles을 중심으로 -)

  • Chung, Yong;Shin, Dong-Chun;Yang, Ji-Yeon;Park, Yeon-Shin;Kim, Jun-Sung
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.31-41
    • /
    • 1997
  • Public concerns about hazardous health effect from the exposure to organic by-products of the chlorination have been increased. There are numerous studies reporting that chlorination of drinking water produces numerous chlorinated organic by-products including THMs, HAAs, HANs. Some of these products are known to be animal carcinogens. The purpose of this study was to estimate health risk of DBPs by chlorinated drinking water ingestion in Seoul based on methodologies that have been developed for conducting risk assessment of complex-chemical-mixture. The drinking water sample was collected seperately at six water treatment plant in Seoul at March, April, 1996. In tap water of households in Seoul, DBPs were measured wilfh the mean value of 36.6 $\mu$g/L. Risk assessment processes,. which include processes for the estimation of human cancer potency using animal bioassay data and calculation of human exposure, entail uncertainties. In the exposure assessment process, exposure scenarios with various assumptions could affect the exposure amount and excess cancer risk. The reference dose of haloacetonitriles was estimated to be 0.0023 mg/kg/day by applying dibromoacetonitrile NOAEL and uncertainty factor to the mean concentration. In the first case, human excess cancer risk was estimated by the US EPA method used to set the MCL (maximum contaminant level). In the second and third case, the risk was estimated for multi-route exposure with and without adopting Monte-Carlo simulation, respectively. In the second case, exposure input parameters and cancer potencies used probability distributions, and in the third case, those values used point estimates (mean, and maximum or 95% upper-bound value). As a result, while the excess cancer risk estimated by US EPA method considering only direct ingestion tended to be underestimated, the risk which was estimated by considering multi-route exposure without Monte-Carlo simulation and then using the maximum or 95% upper-bound value as input parameters tended to be overestimated. In risk assessment for Trihalomethanes, considering multi-route exposure with adopting Monte-Carlo analysis seems to provide the most reasonable estimations.

  • PDF

A Study on Drying Kinetics of Low Rank Coal(Indonesia-IBC) through the Fixed-Bed Reactor Experiments (저등급석탄(低等級石炭)(인도네시아 IBC)의 고정층(固定層) 반응기(反應器) 실험(實驗)을 통한 건조(乾操) 반응속도론(反應速度論) 연구(硏究))

  • Kang, Tae-Jin;Jeon, Do-Man;Jeon, Young-Sin;Kang, Suk-Hwan;Lee, Si-Hyun;Kim, Sang-Do;Kim, Hyung-Taek
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.43-50
    • /
    • 2010
  • The crisis of energy gives rise to the growing concerns over continuing uncertainty in the energy market. Under these circumstances, there are also increasing interests on coals. In particular, Low Rank Coal (LRC) is receiving gradual attentions from green industry. But due to is high moisture content range from 30 - 60%, drying process has to be preceded before being utilized as power plant. In this study drying kinetics of LRC is induced by using a fixed-bed reactor. The drying kinetics was evaluated in from of the particle size, the inlet gas temperature, the drying time, the gas velocity, and the LID ratio. The consideration of the reynold's number was taken for correction of gas velocity, particle size and LID was taken for correction of reactor diameter, packing height of coal. As being seen as characteristic of drying coal, it can be found that fixed-bed reactor can contributed to active drying of free water. In this sense, it could be considered that phase boundary reaction is appropriate mechanism.

Reconsideration of Rare and Endangered Plant Species in Korea Based on the IUCN Red List Categories (IUCN 적색목록 기준에 의한 환경부 멸종위기 야생식물종에 대한 평가)

  • Chang, Chin-Sung;Lee, Heung-Soo;Park, Tae-Yoon;Kim, Hui
    • The Korean Journal of Ecology
    • /
    • v.28 no.5
    • /
    • pp.305-320
    • /
    • 2005
  • Recently 64 species in Korea have been ranked as rare and endangered taxa by the Ministry of Environment using two categories, I and II. The original threat categories produced by the Ministry of Environment were developed to provide a standard for specifying animals and plants in danger of extinction and has been influential sources of information used in species conservation in Korea. However, the criteria by Ministry of Environment were applied to the whole taxa only by regional boundaries, especially in South Korea, rather than international context, and it also lacked an explicit framework that was necessary to ensure repeatability among taxa because of the absence of quantitative criteria to measure the likelihood of extinction. The World Conservation Union (IUCN) has developed quantitative criteria for assessing the conservation status of species. The threatened species categories, the 2000 IUCN Red List, proposed by SSC (Species Survival Commission) of IUCN have become widely recognized internationally. Details of threatened Korean plants, identified by applying the IUCN threat categories and definitions, were listed and analyzed. The number of species identified as threatened was only 34 out of 64 taxa (48.4%), while the rest of taxa were rejected from the original lists. Many of the species (51.6%, 33 taxa) excluded from the original list proposed by Ministry of Environment do not qualify as Critically Endangered, Endangered or Vulnerable because these taxa were widely distributed either in Japan or in China/far eastern Russia and there is no evidence of substantial decline in these countries. An evaluation of taxa in Korea has been carried out only based on subjective views and qualitative data, rather than quantitative scientific data, such as rates of decline, distribution range size, population size, and risk of extinction. Therefore, the national lists undermine the credibility of threatened species lists and invite misuse, which have been raised by other cases, qualitative estimate of risk, political influence, uneven taxonomic or geographical coverage. The increasing emphasis on international responsibilities means that global scale is becoming more significant. The current listings by Environment of Ministry of Korea should be challenged, and the government should seek to facilitate the resolution of disagreements. Especially the list should be flexible enough to handle uncertainty and also incorporates detailed, quantitative data. It is suggested that the highest priorities for the Red List should be given to endemic species in Korea first. After setting up the list of endemic species to Korea, quantitative data on population size and structure, distributional range, rated of decline, and habitat fragmentation should be collected as one of long term projects for the Red list categories. Transparency and accountability are the most important key factors. Also, species assessors are named and data sources referenced are required for the future objective evaluations on Korean plant taxa.