• Title/Summary/Keyword: plant transfer

Search Result 934, Processing Time 0.037 seconds

The Experimental Model Development of Antibiotic Resistance Gene Transfer Characteristics with Various Micropollutants (미량오염물질에 의한 항생제 내성 유전자 전이 특성에 대한 실험모델 개발)

  • Kim, Doocheol;Oh, Junsik;Kim, Sungpyo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.911-916
    • /
    • 2012
  • Recently, antibiotic resistant genes (ARGs) in the environment are emerging as pollutants, since these genetic contaminants can eventually be transferred to human pathogens. The aim of this study was to develop the experimental model of antibiotic resistant gene (ARG) plasmid transfer as a function of various environmental conditions. For this purpose, the multi drug resistant plasmid pB10, which is known to be originally isolated from a wastewater treatment plant, was selected as a model transfer plasmid and Escherichia coli $DH5{\alpha}$ containing pB10 was used as a model donor. Pseudomonas aeruginosa, an opportunistic pathogen, was selected as the recipient for the conjugation experiment. When the donor and recipient were exposed to various stressors including antibiotics and heavy metal as a function of the concentrations (10, 100 and, 1000 ppb), statistically increased plasmid transfer rate was observed at a concentration of 10 ppb of tetracycline and sulfamethoxazole compared to control (no antibiotic exposure). Accordingly, the developed experimental ARG model by various stressor is a promising tool for evaluating the dissemination of ARGs by micro-contaminants in aquatic environment.

Heat Transfer Correlation to Predict the Evaporation of a Water Droplet in Superheated Steam during Reflood Phase of a LOCA

  • Kim, Yoo;Ban, Chang-Hwan
    • Journal of Energy Engineering
    • /
    • v.9 no.3
    • /
    • pp.261-268
    • /
    • 2000
  • A heat transfer correlation to predict the vaporization of a water droplet in highly superheated steam during a loss-of-coolant accident(LOCA) of a nuclear power plant is provided. Vaporization of liquid fuel or water droplets in superheated air or steam and subsequent interface heat transfer between a liquid droplet and superheated gas is typically correlated by way of a Nusselt number as a function of Reynolds number, Prantl number, and in some cases including mass transfer number. Presently available correlations and experimental data of the evaporation of liquid droplets in air or steam are analyzed and a new Nusselt number correlation is proposed taking Schmidt number into consideration in order to account for binary diffusion of the vapor as well, Nu$\_$f/(1+B)$\^$0.7/=2+0.53Sc$\_$f/$\^$-1/5/Re$\_$M/$\^$$\sfrac{1}{2}$/Pr$\_$f/$\^$$\sfrac{1}{3}$/ for which properties are evaluated at film condition except the density of Reynolds number evaluated at ambient condition. Diverse correlations for various combinations of liquid and gas species are put into single equation. The blowing correction factor of (1+B)$\^$0.7/ is confirmed appropriate, and a criterion to distinguish so-called high- and low-temperature condition of ambient gas is set forth.

  • PDF

Experimental Study on the Thermal Performance of a Printed Circuit Heat Exchanger in a Cryogenic Environment (극저온 환경의 인쇄기판형 열교환기 열적성능에 대한 실험적 연구)

  • Kim, Dong Ho;Na, Sang Jun;Kim, Young;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.426-431
    • /
    • 2015
  • The advantages of a printed circuit heat exchanger (PCHE) are the compactness and efficiency derived from its heat-transfer characteristics; furthermore, a PCHE for which a diffusion bonding method was used during production can be applied to extreme environments such as a cryogenic condition. In this study, a micro-channel PCHE fabricated by diffusion bonding was investigated in a cryogenic environment regarding its thermal performance and the pressure drop. The test rig consists of an LN2 storage tank, vaporizers, heaters, and a cold box, whereby the vaporized cryogenic nitrogen flows in hot and cold streams. The overall heat-transfer coefficients were evaluated and compared with traditional correlations. Lastly, we suggested the modified heat-transfer correlations for a PCHE in a cryogenic condition.

Structural Safety Evaluation of Marine Loading Arm Using Finite Element Analysis (유한요소해석을 이용한 해양 로딩암의 구조안전성 평가)

  • Song, Chang Yong;Choi, Ha Young;Shim, Seung Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • This paper presents a structural design review of a marine loading arm used for the fluid transfer of a liquid cargo from a ship or offshore plant. The marine loading arm is installed on a ship, offshore plant, or jetty in order to load or unload liquid cargo such as crude oil, liquefied natural gas (LNG), chemical products, etc. The structural design of this marine loading arm is obliged to comply with the design and construction specifications regulated by the oil companies and international marine forum (OCIMF). In this paper, the structural safety of the initial design for the marine loading arm is evaluated for the design load conditions required by various operational modes. The evaluated results based on a finite element analysis (FEA) are reviewed in relation to the OCIMF specifications.

Conceptual Design of Passive Containment Cooling System for Concrete Containment

  • Lee, Seong-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.358-363
    • /
    • 1995
  • A study on passive cooling systems for concrete containment of advanced pressurized water reactors has been performed. The proposed passive containment cooling system (PCCS) consist of (1) condenser units located inside containment, (2) a steam condensing pool outside containment at higher elevation, and (3) downcommer/riser piping systems which provide coolant flow paths. During an accident causing high containment pressure and temperature, the steam/air mixture in containment is condensed on the outer surface of condenser tubes transferring the heat to coolant flowing inside tubes. The coolant transfers the heat to the steam condensing pool via natural circulation due to density difference. This PCCS has the following characteristic: (1) applicable to concrete containment system, (2) no limitation in plant capacity expansion, (3) efficient steam condensing mechanism (dropwise or film condensation at the surface of condenser tube), and (4) utilization of a fully passive mechanism. A preliminary conceptual design work has been done based on steady-state assumptions to determine important design parameter including the elevation of components and required heat transfer area of the condenser tube. Assuming a decay power level of 2%, the required heat transfer area for 1,000MWe plant is assessed to be about 2,000 ㎡ (equivalent to 1,600 of 10 m-long, 4-cm-OD tubes) with the relative elevation difference of 38 m between the condenser and steam condensing pool and the riser diameter of 0.62 m.

  • PDF

Analysis of the Low Affinity System of the Uptake of Fructose in Suspension Culture Cells (조직 배양에서의 과당의 능동 수송에 대한 Low Affinity System의 분석)

  • 조봉희
    • Journal of Plant Biology
    • /
    • v.30 no.4
    • /
    • pp.277-285
    • /
    • 1987
  • Undifferentiated suspension cells had the ability to transfer glucose and fructose actively, but the suspension culture cells were unable to transfer saccharide without previously splitting to monosccarides. The uptake of fructose showed the low- and high-affinity system compared to of glucose, which possessed only one saturable uptake system. In this paper, the low affinity system of the uptake of fructose has been studied intensively. Glucose did not inhibit the low affinity system of fructose competitively. The Km value was 47 mM for fructose, 7.4 mM for glucose and Vmax was 69 $\mu$mol/h.g fresh weight for fuctose, 9.8 $\mu$ mol/h.g fresh weight for glucose. Metabolizer inhibitors, both 50 $\mu$M of CCCP and DNP, inhibited 70% of the uptake of the low affinity system of fructose. The proton ions were accompanied by the uptake of fructose. The stoichiometry showed ratio of proton to fructose was 0.17. The mechanism ofthe uptake was fructose-proton-symport. The molecules of fructose accmululated inside 25 times more than outside. Therefore, the low affinity system of fructose was not mere diffusion, but depended on metabolic energy and thus transported actively. The importance of this system was discussed.

  • PDF

Performance Analysis of Summertime Heat Transfer Characteristics of the Double Skin Window for Plant Factory (식물공장 이중창호의 하절기 열전달 성능 분석)

  • So, Jae-Hyun;Kim, Woo-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.351-357
    • /
    • 2012
  • To reduce the summertime cooling load of a plant factory, a concept design was performed for the double skin window which utilizes the low temperature air from a ground coupled heat exchanger. The design parameters were selected as the number of cavity air inlet, the cavity thickness, the location of cavity air inlet, and the configuration of cavity air outlet. A parametric study was conducted in a systematic way to evaluate the heat transfer characteristics of the double skin window. As the number of cavity air inlet and the cavity thickness increase, the heat flux from outside air to indoor air was decreased. The effect of the location of cavity air inlet was not significant and the larger cavity air outlet area gave us relatively better heat blocking performance from outside hot air. This study demonstrated that it is possible to develop an improved double skin window by utilizing a ground coupled heat exchanger.

Osmotic Stress-Inducible Expression of a Lipid Transfer Protein Gene in Poplar

  • Lee, Hyo-Shin;Shin, Han-Na;Bae, Eun-Kyung;Lee, Jae-Soon;Noh, Eun-Woon
    • Korean Journal of Plant Resources
    • /
    • v.21 no.3
    • /
    • pp.204-209
    • /
    • 2008
  • We have cloned an LTP gene (PoLTP1) from poplar (Populus alba ${\times}$ P. tremula var. glandulosa) suspension cells and examined changes in its expression levels in response to various stresses and ABA treatment. The full-length PoLTP1 cDNA clone encodes a polypeptide of 116 amino acids with typical characteristics of LTPs, notably a conserved arrangement of cysteine residues. Southern blot analysis indicate that two or three copies of the PoLTP1 are present in the genome of the investigated hybrid poplar. In addition, northern analysis of samples from soil-grown plants indicate that PoLTP1 is tissue-specifically expressed in the leaves and flowers. The gene is significantly up-regulated by treatment with mannitol, NaCl and ABA, but not by either cold or wounding. These results indicate that PoLTP1 is involved in osmotic stress responses in poplar plants and suspension cells.

DCS Model Calculation for Steam Temperature System

  • Hwang, Jae-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1201-1204
    • /
    • 2004
  • This paper suggests a DCS (Distributed Control System) model for steam temperature system of the thermal power plant. The model calculated within sectional range is linear. In order to calculate mathematical models, the system is partitioned into two or three sectors according to its thermal conditions, that is, saturated water/steam and superheating state. It is divided into three sections; water supply, steam generation and steam heating loop. The steam heating loop is called 'superheater' or steam temperature system. Water spray supply is the control input. A first order linear model is extracted. For linear approach, sectional linearization is achieved. Modeling methodology is a decomposition-synthetic technique. Superheater is composed of several tube-blocks. For this block, linear input-output model is to be calculated. Each tiny model has its transfer function. By expanding these block models to total system, synthetic DCS linear models are derived. Control instrument include/exclude models are also considered. The resultant models include thermal combustion conditions, and applicable to practical plant engineering field.

  • PDF

A Study on Optimal Operation for Soot Blower of Power Plant (발전용 Soot Blower 최적운전에 관한 연구)

  • Kim, Sung-Ho;Jung, Hae-Won;Yook, Sim-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.541-543
    • /
    • 2004
  • An optimal soot blowing system has been developed for an optimal operation of power utility boilers by both minimization of the use of steam and the number of soot blowers worked during soot blowing. Traditionally, the soot blowing system has been operated manually by operators. However, it causes the reduction of power and thermal performance degradation because all soot blowers installed in the plant should be worked simultaneously even there are lots of tubes those are not contaminated by slagging or fouling. Heat transfer area is divided into four groups, furnace, convection area including superheater, reheater and economizer, and air preheater in the present study. The condition of cleanness of the tubes is calculated by several parameters obtained by sensors. Then, a part of soot blowers works automatically where boiler tubes are contaminated. This system has been applied in a practical power plant. Therefore, comparison has been done between this system and manual operation and the results are discussed.

  • PDF