• Title/Summary/Keyword: plant temperature

Search Result 4,494, Processing Time 0.037 seconds

Development of Special Steels for Turbine Blade of Nuclear Power Plant (원자력 터빈 블레이드용 특수강 개발)

  • Im, Cha-Yong;Kim, Seong-Jun
    • 연구논문집
    • /
    • s.24
    • /
    • pp.119-128
    • /
    • 1994
  • A special steels have been developed for the possible applications of turbine blade in nuclear power plant. The compositions of developed alloy were selected by the reference of imported alloy. The various properties such as tensile property, impact energy, hardness, and microstructures were investigated. All the properties of optimum heat treated materials were satisfied with the present specifications of turbine blade materials in unclear power plant. Furthermore, FATT(Fracture appearance transition temperature), high temperature tensile properties, and transformation temperatures of developed alloy also have been studied.

  • PDF

Study on Matter Production and Phothsynthetic Characteristics in Wild Vegetable(Chwinamul) (취나물류의 물질생산과 광합성특성에 관한 연구 II. 수분스트레스하에서 고온 및 저온처리가 취나물류의 광합성속도에 미치는 영향)

  • 조동하
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.307-314
    • /
    • 1998
  • The response of water stree under high and low temperatures, was shown differently according to the longer the suspension period of water supply. Leaf photosynthetic rate(LPS), leaf water potential(WP), relative leaf water content and relative soil water content were lower. At the higher temperatures, the percentate of reduction in LPS and WP was greater than at low temperatures. It is suggested that evaporation rate should be higher in the high temperature than the lower temperature. Also leaf water potential was lower at high temperature than at low temperature. After the 9 th day of treatment , LSP was remarkably reduced at high temperature, but the reduction of LPS was not significant at low temperature. Solidago virga-aurea var. asiatic that maintained LPS of 3rd day after treatment was more strong than other varieties at low temperatures. The silting and curling of leaves were observed symptoms of stress on the 9th day at the both temperatures. The leaves of aster scaber and Ligularia fischeri turned red on the 9th day after treatment at low temperature.

  • PDF

STUDIES ON THE PHYSIOLOGY OF DEVELOPMENT IN CROPS. 4. STUDIES ON PHYTOPERIODICAL CONTROL FOR TUBER FORMATION IN SWEET POTATO

  • Kim, Yong-Choll
    • Journal of Plant Biology
    • /
    • v.2 no.1
    • /
    • pp.35-42
    • /
    • 1959
  • The cuttings and apical portion of stein in sweet potato were growlh under artificial light and specific photoperied and temperature. Though the plant growth was poor under insufficient light intensity of artificial light, the tuber formations were induced at long light period (16L+8D) and not induced at short light period (8L+16D) and low temperature of darkparied. The determinative factor for tuber formation of sweet potato seems to be a stimulation which has intimate relationship with specific photoperiod and temperature and no direct relation with the growth of plant body and light intensity. The root pattern of inductive state for tubers and non-inductive state were different distinctly, the former were silky and slender, the latter were branchy, and stout appearence. This different root pattern must be due also to the specific photoperiod and temperature and may have any relationship with the stimulation for tuber formation from the point of auxin physiology etc.

  • PDF

Effects of Temperature and Light intensity on Growth and Yield of Condonopsis lanceolata (온도 및 光條件이 더덕의 생육과 수량에 미치는 영향)

  • 김학현
    • Korean Journal of Plant Resources
    • /
    • v.10 no.4
    • /
    • pp.392-396
    • /
    • 1997
  • The present study was performed to obtain a basic data of cultivation for Condonopsis lanceolata. Various temperatures, light, and DIF were treated during the whole plant growth. The growth of aerial part was most remarkable between $20^{\circ}C$ and $25^{\circ}C$, but inhibited by means of shading treatment. The fresh weight of subterranean part was heaviest(16.6g) at $15^{\circ}C$. Also, plant height increased when a constant temperature and +DIF were treated. Leaf width and length was not related to temperature and DIF treatment. The fresh weight of subterranean part increased in +DIF-treated sample at $25^{\circ}C$.

  • PDF

Mechanical properties and adiabatic temperature rise of low heat concrete using ternary blended cement

  • Kim, Si-Jun;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.271-280
    • /
    • 2016
  • This study examined the mechanical properties and adiabatic temperature rise of low-heat concrete developed based on ternary blended cement using ASTM type IV (LHC) cement, ground fly ash (GFA) and limestone powder (LSP). To enhance reactivity of fly ash, especially at an early age, the grassy membrane was scratched through the additional vibrator milling process. The targeted 28-day strength of concrete was selected to be 42 MPa for application to high-strength mass concrete including nuclear plant structures. The concrete mixes prepared were cured under the isothermal conditions of $5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$. Most concrete specimens gained a relatively high strength exceeding 10 MPa at an early age, achieving the targeted 28-day strength. All concrete specimens had higher moduli of elasticity and rupture than the predictions using ACI 318-11 equations, regardless of the curing temperature. The peak temperature rise and the ascending rate of the adiabatic temperature curve measured from the prepared concrete mixes were lower by 12% and 32%, respectively, in average than those of the control specimen made using 80% ordinary Portland cement and 20% conventional fly ash.

Hydrogen Production Technology using High Temperature Electrolysis (고온 수전해에 의한 수소 제조 기술)

  • Hong, Hyun Seon;Choo, Soo-Tae;Yun, Yongseung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.335-347
    • /
    • 2003
  • High temperature electrolysis (HTE) can become a key target technology for fulfilling the hydrogen requirement for the future hydrogen economy. This technology is based upon the partial replacement of electricity with heat energy for the electrolysis. Although the current research status of high temperature electrolysis in many countries remains at the small laboratory scale, the technology has great potential for producing hydrogen at a higher efficiency than low-temperature electrolysis (LTE). The efficiency of LTE is not expected to rise above 40%, whereas the efficiency of HTE has been reported to be above 50%. The higher efficiency of HTE would reduce costs by more than 30% compared to LTE. In this study, the technical data regarding the HTE of water and the resulting hydrogen production are reviewed, with an emphasis on the application of high temperature solid electrolyte and oxide electrodes for the HTE process.

Analysis of dew point and corrosion resistance for power plant economizer tube with exhaust gas temperature and sulfuric acid concentration (발전소 절탄기 튜브의 배기가스 온도와 황산 농도에 따른 노점 및 내식성 분석)

  • Choi, Jae-Hoon;Lee, Seung-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.433-440
    • /
    • 2022
  • Environmental pollution caused by power plant exhaust gas is highlighted and eco-friendly regulations are being strengthened. However, due to the abundant reserves and low prices of coal, still the most used for power generation in the world. Therefore, flexible operation of coal-fired power plants to reduce emissions has become an inevitable option. However, lowering the output increases the possibility of acid dew point corrosion as the exhaust gas temperature decreases. The dew point corrosion occurs when condensable gases such as SO3, HCl, NO2 and H2O cools below the saturation temperature. SO3 is already well known to cause severe low- temperature corrosion in coal-fired power plants. Therefore, this study aims to prevent damage that may occur during operation by analyzing the dew point and corrosion resistance with exhaust gas temperature and sulfuric acid concentration of the power plant economizer tube.

Comparison of Planting Types on an Extensive Green Roof Based on Summer Surface Temperature (저관리 경량형 옥상녹화의 식재 유형별 여름철 표면온도 비교)

  • Han, Yichae;Lee, Binara;Ahn, Geunyoung;Lee, Eun-Heui
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.2
    • /
    • pp.55-69
    • /
    • 2016
  • Significant efforts are being devoted in mitigating the urban heat island effect, and extensive green roofs are an option for mitigation. The purpose of this study was to compare the surface temperature, vegetation types, and plant species on an extensive green roof. Test beds were created in May 2015, and the surface temperature was monitored from June to August. The test beds comprised polyculture and monoculture. Polyculture was divided into three types, and monoculture comprised eight plant species. An extensive green roof is effective in reducing temperature by forming a shade and preventing sunlight from falling on the surface of buildings, which mitigates the urban heat island effect. Consequently, the surface temperature of the green roof and that of concrete during summer reduced from $17.8^{\circ}C$ to $7.3^{\circ}C$. The temperature reduction was greater on using polyculture than on using monoculture, but monocultures of Sedum takesimense, Hemerocallis dumortieri, Allium senescens, Aster yomena, Belamcanda chinensis, and Aster koraiensis also produced good results. The temperature reduction effects of Polygonatum odoratum var. pluriflorum f. variegatum, Phlox subulata, and Thymus quinquecostatus var. japonica were excellent compared with those of concrete but were less than those of other plant species. Careful attention is needed for the management of extensive green roofs. Studies on the plant species and types of extensive green roof should continue to mitigate the urban heat island effect.

Dispersion of High Temperature and High Salinity Water Discharged from Offshore Desalination Plant (해상 담수화 공장에서 배출되는 고온고염 해수의 확산예측)

  • Lee Moonjin;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • Dispersion of high temperature and high salinity water discharged from a desalination plant is numerically estimated to investigate its impact on marine environment. The plant is installed on a floating barge located in Jinhae Bay and takes 200 tons of seawater per day. Fifty tons of intake are changed into fresh water, while 150 tons of those are discharged as the water of 15℃ warmer and 1.33 times saltier than surrounding seawater. In this dispersion model, advection is described by two-dimensional tidal currents and turbulent diffusion is simulated by Monte Carlo technique. Decay of water temperature is modelled by heat exchange between the atmosphere and the ocean, while decay of water salinity is ignored. The distributions of temperature and salinity come to equilibrium when the dispersion model is run for 100 days for temperature and for 365 days for salinity, respectively. At equilibrium state the water temperature and salinity rise 0.01℃ and 0.001‰ higher than ambient seawater, respectively.

  • PDF