• 제목/요약/키워드: plant stress

검색결과 2,182건 처리시간 0.027초

Photosynthetic characteristics and chlorophyll of Vitex rotundifolia in coastal sand dune

  • Byoung-Jun Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • 제47권3호
    • /
    • pp.103-116
    • /
    • 2023
  • Background: This study analyzed the physiological adaptations of a woody plant, Vitex rotundifolia, in Goraebul coastal sand dunes from May to September 2022. Environmental factors and physiological of plants growing under field and controlled (pot) conditions were compared. Results: Photosynthesis in plants growing in the coastal sand dunes and pots was the highest in June 2022 and July 2022, respectively. Chlorophyll fluorescence indicated the presence of stress in the coastal sand dune environment. The net photosynthesis rate (PN) and Y(II) were highest in June in the coastal sand dune environment and July in the pot environment. In August and September, Y(NPQ) increased in the plants in the coastal sand dune environment, showing their photoprotective mechanism. Chlorophyll a and b contents in the pot plant leaves were higher than those in the coastal sand dune plant leaves; however, chlorophyll-a/b ratio was higher in the coastal sand dune plant leaves than in the pot plant leaves, suggesting a relatively high photosynthetic efficiency. Carotenoid content in the coastal sand dune plant leaves was higher in August and September 2022 than that in the pot plant leaves. Leaf water and soluble carbohydrate contents of the coastal sand dune plant leaves decreased in September 2022, leading to rapid leaf abscission. Diurnal variations in photosynthesis and chlorophyll fluorescence in both environments showed peak activity at 12:00 hour; however, the coastal sand dune plants had lower growth rates and Y(II) than the pot plants. Plants in the coastal sand dunes had higher leaf water and ion contents, indicating that they adapted to water stress through osmotic adjustments. However, plants growing in the coastal sand dunes exhibited reduced photosynthetic activity and accelerated decline due to seasonal temperature decreases. These findings demonstrate the adaptation mechanisms of V. rotundifolia to water stress, poor soils, and high temperature conditions in coastal sand dunes. Conclusions: The observed variations indicate the responses of the V. rotundifolia to environmental stress, and may reveal its survival strategies and adaptation mechanisms to stress. The results provide insights into the ecophysiological characteristics of V. rotundifolia and a basis for the conservation and restoration of damaged coastal sand dunes.

Platform of Hot Pepper Stress Genomics: Indentification of Stress Inducible Genes in Hot Pepper (Capsicum annuum L.) Using cDNA Microarray Analysis

  • Chung, Eun-Jo;Lee, Sanghyeob;Park, Doil
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.81.1-81
    • /
    • 2003
  • Although plants have evolved to possess various defense mechanisms from local biotic and abiotic stressors, most of yield loss is caused by theses stressors. Recent studies have revealed that several different stress responsive reactions are inter-networking. Therefore, the identification and dissection of stress responsive genes is an essential and first step towards understanding of the global defense mechanism in response to various stressors. For this purpose, we applied cDNA microarray analysis, because it has powerful ability to monitor the global gene expression in a specific situation. To date, more than 10,000 non-redundant genes were identified from seven different cDNA libraries and deposited in our EST database (http://plant.pdrs.re.kr/ks200201/pepper.html). For this study, we have built 5K cDNA microarray containing 4,685 unigene clones from three different cDNA libraries. Monitoring of gene expression profiles of hot pepper interactions with biotic stress, abiotic stresses and chemical treatments will be presented. Although this work shows expression profiling at the sub-genomic level, this could be a good starting point to understand the complexity of global defense mechanism in hot pepper.

  • PDF

Histone deacetylase family in balloon flower (Platycodon grandiflorus): Genome-wide identification and expression analysis under waterlogging stress

  • Min-A Ahn;Ga Hyeon Son;Tae Kyung Hyun
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.232-238
    • /
    • 2023
  • Histone deacetylases (HDACs) play a pivotal role in epigenetic regulation, affecting the structure of chromatin and gene expression across different stages of plant development and in response to environmental stresses. Although the role of HDACs in Arabidopsis and rice has been focused on in extensive research, the role of the HDAC gene family in various medicinal plants remains unclear. In the genome of the balloon flower (Platycodon grandiflorus), we identified 10 putative P. grandiflorus HDAC (PlgHDAC) proteins, which were classified into the three families (RPD3/HDA1, SIR2, and HD2 HDAC families) based on their domain compositions. These HDACs were predicted to be localized in various cellular compartments, indicating that they have diverse functions. In addition, the tissue-specific expression profiles of PlgHDACs differed across different plant tissues, indicating that they are involved in various developmental processes. Furthermore, the expression levels of all PlgHDACs were upregulated in leaves after waterlogging treatment, implying their potential role in coping with waterlogging-induced stress. Overall, our findings provide a comprehensive foundation for further research into the epigenetic regulation of PlgHDACs, and particularly, on their functions in response to environmental stresses such as waterlogging. Understanding the roles of these HDACs in the development and stress responses of balloon flower could have significant implications for improving crop yield and the quality of this important medicinal plant.

Biological Inoculant of Salt-Tolerant Bacteria for Plant Growth Stimulation under Different Saline Soil Conditions

  • Wang, Ru;Wang, Chen;Feng, Qing;Liou, Rey-May;Lin, Ying-Feng
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권3호
    • /
    • pp.398-407
    • /
    • 2021
  • Using salt-tolerant bacteria to protect plants from salt stress is a promising microbiological treatment strategy for saline-alkali soil improvement. Here, we conducted research on the growth-promoting effect of Brevibacterium frigoritolerans on wheat under salt stress, which has rarely been addressed before. The synergistic effect of B. frigoritolerans combined with representative salt-tolerant bacteria Bacillus velezensis and Bacillus thuringiensis to promote the development of wheat under salt stress was also further studied. Our approach involved two steps: investigation of the plant growth-promoting traits of each strain at six salt stress levels (0, 2, 4, 6, 8, and 10%); examination of the effects of the strains (single or in combination) inoculated on wheat in different salt stress conditions (0, 50, 100, 200, 300, and 400 mM). The experiment of plant growth-promoting traits indicated that among three strains, B. frigoritolerans had the most potential for promoting wheat parameters. In single-strain inoculation, B. frigoritolerans showed the best performance of plant growth promotion. Moreover, a pot experiment proved that the plant growth-promoting potential of co-inoculation with three strains on wheat is better than single-strain inoculation under salt stress condition. Up to now, this is the first report suggesting that B. frigoritolerans has the potential to promote wheat growth under salt stress, especially combined with B. velezensis and B. thuringiensis.

Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress

  • Kim, So Wun;Gupta, Ravi;Min, Cheol Woo;Lee, Seo Hyun;Cheon, Ye Eun;Meng, Qing Feng;Jang, Jeong Woo;Hong, Chi Eun;Lee, Ji Yoon;Jo, Ick Hyun;Kim, Sun Tae
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.143-153
    • /
    • 2019
  • Background: Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and antiaging properties and are being used in the medical systems of East Asian countries. It is grown in low-light and low-temperature conditions, and its growth is strongly inhibited at temperatures above $25^{\circ}C$. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at the protein level. Methods: We used a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. We monitored their photosynthetic efficiency to confirm physiological responses to a high-temperature stress. Results: The results showed a reduction in photosynthetic efficiency on heat treatment ($35^{\circ}C$) starting at 48 h. Label-free quantitative proteome analysis led to the identification of 3,332 proteins, of which 847 were differentially modulated in response to heat stress. The MapMan analysis showed that the proteins with increased abundance were mainly associated with antioxidant and translation-regulating activities, whereas the proteins related to the receptor and structural-binding activities exhibited decreased abundance. Several other proteins including chaperones, G-proteins, calcium-signaling proteins, transcription factors, and transfer/carrier proteins were specifically downregulated. Conclusion: These results increase our understanding of heat stress responses in the leaves of ginseng at the protein level, for the first time providing a resource for the scientific community.

식물의 고염 스트레스에 대한 반응 및 적응기작 (Molecular Mechanism of Plant Adaption to High Salinity)

  • 윤대진
    • Journal of Plant Biotechnology
    • /
    • 제32권1호
    • /
    • pp.1-14
    • /
    • 2005
  • Plant responses to salinity stress is critical in determining the growth and development. Therefore, adaptability of plant to salinity stress is directly related with agriculture productivity. Salt adaptation is a result of the integrated functioning of numerous determinants that are regulated coordinately through an appropriate responsive signal transduction cascade. The cascade perceives the saline environment and exerts control over the essential mechanisms that are responsible for ion homeostasis and osmotic adjustment. Although little is known about the component elements of salt stress perception and the signaling cascade(s) in plant, the use of Arabidopsis plant as a molecular genetic tool has been provided important molecular nature of salt tolerance effectors and regulatory pathways. In this review, I summarize recent advances in understanding the molecular mechanisms of salt adaptation.

Major Fe-Superoxide Dismutase (FeSOD) Activity in Pseudomonas putida is Essential for Survival Under Conditions of Oxidative Stress During Microbial Challenge and Nutrient Limitation

  • Kim, Young-Cheol;Kim, Cheol-Soo;Cho, Baik-Ho;Anderson, Anne-J.
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.859-862
    • /
    • 2004
  • An isolate of Pseudomonas putida has been found to aggressively colonize root tips and induce plant resistance to Fusarium wilt. However, P. putida mutants lacking Fe-superoxide dismutase (SOD) or both FeSOD and MnSOD activities are less competitive in root tip colonization. In the current study, the growth of an FeSOD mutant was found to be more sensitive than that of the wild-type or a MnSOD mutant to oxidative stress imposed by paraquat treatment and culturing with the soil fungus Talaromyces flavus, which generates reactive oxygen species. Also, the loss of culturability with an aging stationary-phase culture was greater for a double SOD mutant than an FeSOD mutant, while no reduction in culturability was observed with the wild-type and a MnSOD mutant under the same protracted stationary-phase conditions. Accordingly, it was concluded that FeSOD activity is the major form of SOD in P. putida and plays an essential role in survival under stress conditions when increased oxidative stress is encountered.