• Title/Summary/Keyword: plant pipe

Search Result 472, Processing Time 0.025 seconds

Analysis of hydraulic system for seawater desalination plant through piping analysis program (배관 해석 프로그램을 통한 해수담수화 플랜트 수압 시스템 분석)

  • Choi, Jihyeok;Choi, Yongjun;Yang, Heungsik;Lee, Sangho;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.221-230
    • /
    • 2020
  • In actual seawater desalination plant, the pressure loss due to frictional force of pipe is about 3~5 bar. Also, the pressure loss at pipe connection about 1~3 bar. Therefore, the total pressure loss in the pipe is expected to be about 4~8 bar, which translates into 0.111 to 0.222 kWh/㎥ of energy when converted into the Specific Energy Consumption(SEC). Reducing energy consumption is the most important factor in ensuring the economics of seawater desalination processes, but pressure loss in piping is often not considered in plant design. It is difficult to prevent pressure loss due to friction inside the pipe, but pressure loss at the pipe connection can be reduced by proper pipe design. In this study, seawater desalination plant piping analysis was performed using a commercial network program. The pressure loss and SEC for each case were calculated and compared by seawater desalination plant size.

Development of 3-D. Displacement Measurement System for Critical Pipe of Fossil Power Plant (화력발전소 주배관 3차원 변위측정시스템 개발)

  • Song, G.W.;Hyun, J.S.;Ha, J.S.;Cho, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1198-1205
    • /
    • 2003
  • Most domestic fossil power plant have exceeded 100,000 hours of operation with the severe operating condition. Among the critical components of fossil power plant, high temperature steam pipe system have had a many problems and damage from unstable displacement behavior because of frequent start up and shut down. In order to prevent the serious damage and failure of the critical pipe system in fossil power plant, 3-dimensional displacement measurement system were developed for the on-line monitoring system. 3-D Measurement system was developed with using the LVDT type sensor and rotary encoder type sensor, this system was installed and operated on the real power plant successfully. In the future time, network system of on-line diagnosis for critical pipe will be designed.

  • PDF

The Use of Guided Waves for Rapid Screening of Chemical Plant Pipework

  • Alleyne, D.N.;Pavlakovic, B.;Lowe, M.J.S.;Cawley, P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.589-598
    • /
    • 2002
  • The safe operation of petrochemical plant requires screening of the pipework to ensure that there are no unacceptable levels of corrosion. Unfortunately, each plant has many thousands of metres of pipe, much of which is insulated or inaccessible. Conventional methods such as visual inspection and ultrasonic thickness gauging require access to each point of the pipe which is time consuming and very expensive to achieve. Extensional or torsional ultrasonic guided waves in the pipe wall provide an attractive solution to this problem because they can be excited at one location on the pipe and will propagate many metres along the pipe, returning echoes indicating the presence of corrosion or other pipe features. Guided Ultrasonics Ltd have now commercialised the technique and this paper describes the basis of the method, together with examples of practical test results and typical application areas.

Deterioration Evaluation for Industrial Pipeline by Sectionalizing (산업시설 배관의 섹션화에 의한 노후도 평가)

  • Min, Hyuk-Ki;Kim, Sang-Bum;Kim, Byung-Woo;Kim, Hyoung-Ki;Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.123-130
    • /
    • 2016
  • This study introduced deterioration evaluation item and criteria that could be applied to industrial facilities with the most widely used carbon steel pipe installed for ordinary piping (KSD 3507). Experimental industrial pipes were evaluated with pipe sectionalizing method combined with the established evaluation item and criteria to measure and manage semi-continuously for overall piping system. After applying outcomes from this study to a plant of incineration facility, a 42% saving in repairing and remodeling cost was achieved.

Selection of the Large Diameter Pipe Wall Thickness by Value Engineering for a Plant (플랜트에서 가치공학 개념을 적용한 대관경 배관두께 선정에 관한 연구)

  • Choi, Gayoung;Yoo, Hoseon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.7 no.3
    • /
    • pp.65-73
    • /
    • 2011
  • This research has suggested a method to select pipe wall thickness by application of the value engineering to reduce the cost and quantity that are major part of construction materials. This research shows that the application of value engineering reduces the cost of piping materials by optimizing pipe wall thickness while maintaining process flow date of design pressure and design temperature. Based on this knowledge, the application of the value engineering will lead to the cost reduction and quantity reduction by effective selection of pipe wall thickness. The application of the value engineering will help the EPC companies to win a contract in the overseas plant market.

  • PDF

Development of On-line Displacement Monitoring System for High Temperature Steam Pipe of Fossil Power Plant (화력발전소 고온 증기배관 실시간 변위감시 시스템 개발)

  • Lee Young Shin;Hyun Jung Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.83-89
    • /
    • 2005
  • Most domestic fossil power plants have exceeded 100,000 hours of operation with the severe operating condition. Among the critical components of fossil power plant, high temperature steam pipe systems have had a many problems and damage from unstable displacement behavior because of frequent start up and shut down. In order to prevent the serious damage and failure of the critical pipe system in fossil power plants, 3-dimensional displacement measurement system was developed for the on-line monitoring. Displacement measurement system was developed with a use of a LVDT type sensor and two rotary encoder type sensors. This system was installed and operated on the real power plant successfully.

Liquidity Evaluation on the Horizontal Branch Pipe Connected to a Food Waste Disposer (디스포저에 의한 음식물류폐기물 횡지관 유동성 평가)

  • Jang, Choon-Man;Lee, Sang-Moon;Kim, Chul-Kyu;Park, Se-Joon;Yu, Jong-Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • This paper describes liquidity evaluation on the horizontal branch pipe connected to a food waste disposer and performance of five disposers marketed. Experimental apparatus for analyzing the five disposers has been introduced to measure vibration, sound level and power consumption of the disposers. Simulator for analyzing the required water velocity to avoid waste jam inside the pipe connected to a food waste disposer has been designed and constructed. The simulator can control some experimental parameters: pipe slope, disposer supply water quantity, food waste materials and operation time of a disposer. Throughout the experimental measurements of the disposers marketed, it is found that the time need to crash food waste is about 20 seconds on the average. At the same flow condition, increase rate of internal water velocity is accelerated as the pipe slope increases. The water velocity inside the pipe having 50 A and slope of 1/50 is 0.26 m/s when the water flowrate to supply the disposer is 16 l pm. Considering the specific gravity and adhesion property of food waste, water velocity of the horizontal branch pipe connected to a food waste disposer need to excess 0.26 m/s at least to avoid the waste blockage inside the pipe.

Applicability of Supporting Standard for a Straight Pipe System to an Elbow (직관 지지대 설치 기준의 L형관 설계 적용 가능성에 관한 연구)

  • Han, Sang-Kyu;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.8 no.2
    • /
    • pp.52-58
    • /
    • 2012
  • Pipe means the connection of the tube in order to transfer fluid from one device to another device. The piping stress analysis is to analyze the structural stability considering the location and the features of piping support after completing the piping design, The allowable stresses comply with the requirements of the relevant standards by examining whether the support of the function and location of pipe or re-operation is confirmed. Allowable stresses are to make sure that the maximum stress should not exceed the allowable stress presented in the ASME B31.1 POWER PIPING code. ASME B31.1 POWER PIPING code ensures a smooth stress analysis can be performed during the initial pipe stress analysis as provided in the case of straight pipe to the horizontal distance between the supports. However, because there is no criteria set in the case of curved pipe, the optimum pipe supporting points were studied in this paper. As mentioned about the curved pipe, loads applied to the support of the position of 17% and 83% of the position relative to the elbow part have results similar to the load acting on the support of straight pipe.

  • PDF

Plant-scale experiments of an air inflow accident under sub-atmospheric pressure by pipe break in an open-pool type research reactor

  • Donkoan Hwang;Nakjun Choi;WooHyun Jung;Taeil Kim;Yohan Lee;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1604-1615
    • /
    • 2023
  • In an open-pool type research reactor with a downward forced flow in the core, pipes can be under sub-atmospheric pressure because of the large pressure drop at the reactor core in the atmospheric pool. Sub-atmospheric pressure can result in air inflow into the pipe from the pressure difference between the atmosphere and the inside of the pipe, which in a postulated pipe break scenario can lead to the breakdown of the cooling pump. In this study, a plant-scale experiment was conducted to study air inflow in large piping systems by considering the actual operational conditions of an advanced research reactor. The air inflow rate was measured, and the entrained air was visualized to investigate the behavior of air inflow and flow regime depending on the pipe break size. In addition, the developed drift-flux model for a large vertical pipe with a diameter of 600 mm was compared with other correlations. The flow regime transition in a large vertical pipe under downward flow was also studied using the newly developed drift-flux model. Consequently, the characteristics of two-phase flow in a large vertical pipe were found to differ from those in small vertical pipes where liquid recirculation was not dominant.

Development Portable Pipe Spool Location-Confirm System Based UHF RFID (UHF RFID기반 이동형 파이프 스풀 위치 인식 시스템 개발)

  • Kim, Jinsuk;Shin, Yongtae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.329-336
    • /
    • 2014
  • Pipe spool is the most important element of plant equipment in plant construction site. Currently, the plant construction site manage the pipe spool location and usage history by handwriting. Frequently, the pipe spool is moved to unpredictable places by field workers in many construction sites and in cases like this, the pipe stool is replaced with another similar pipe spool. Since it's hard to determine the exact location of some of the pipe spools, it takes unnecessary time and labour to find the missing pipe spools, which proves that stock management is not under control. The purpose of our system is to make the identification of real-time location of the field pipes possible by attaching UHF RFID tags to the pipe spool, which will be used to connect with UHF RFID reader and antenna on vehicles. A field test conducted by the proposed system resulted in the success rate of 98% and the missing 2% was recuperated by hands-on correction, which proved that stock management through the proposed method can be 100% effective. The proposed system is expected to reduce labour costs and make stock control of assets possible, as well as applicable to similar stock management environments.