• Title/Summary/Keyword: plant pathogenesis

Search Result 193, Processing Time 0.022 seconds

Draft Genome Sequence of Xylaria grammica EL000614, a Strain Producing Grammicin, a Potent Nematicidal Compound

  • Park, Sook-Young;Jeon, Jongbum;Kim, Jung A;Jeon, Mi Jin;Yu, Nan Hee;Kim, Seulbi;Park, Ae Ran;Kim, Jin-Cheol;Lee, Yerim;Kim, Youngmin;Choi, Eu Ddeum;Jeong, Min-Hye;Lee, Yong-Hwan;Kim, Soonok
    • Mycobiology
    • /
    • v.49 no.3
    • /
    • pp.294-296
    • /
    • 2021
  • An endolichenic fungus, Xylaria grammica strain EL000614, showed strong nematicidal effects against plant pathogenic nematode, Meloidogyne incognita by producing grammicin. We report genome assembly of X. grammica EL000614 comprised of 25 scaffolds with a total length of 54.73 Mb, N50 of 4.60 Mb, and 99.8% of BUSCO completeness. GC contents of this genome were 44.02%. Gene families associated with biosynthesis of secondary metabolites or regulatory proteins were identified out of 13,730 gene models predicted.

Comparative Analysis of the Korean Population of Magnaporthe oryzae by Multilocus Microsatellite Typing

  • Choi, Jaehyuk;Kim, Hyojung;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.435-439
    • /
    • 2013
  • Rice blast fungus, Magnaporthe oryzae, inflicts serious damage to global rice production. Due to high variability of this fungal pathogen, resistance of newly-released rice cultivars is easily broken down. To understand the population structure of M. oryzae, we analyzed the genetic diversity of the Korean population using multilocus microsatellite typing. Eleven microsatellite markers were applied to the population of 190 rice isolates which had been collected in Korea for two decades since the 1980's. Average values of gene diversity and allele frequency were 0.412 and 6.5, respectively. Comparative analysis of the digitized allele information revealed that the Korean population exhibited a similar level of allele diversity to the integrated diversity of the world populations, suggesting a particularly high diversity of the Korean population. Therefore, these microsatellite markers and the comprehensive collection of field isolates will be useful genetic resources to identify the genetic diversity of M. oryzae population.

A Fluorescence-based cDNA-AFLP Method for Identification of Differentially Expressed Genes

  • Park, Sook-Young;Jwa, Nam-Soo;Chi, Myoung-Hwan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.184-188
    • /
    • 2009
  • Identification of differently expressed genes under specific tissues and/or environments provides insights into the nature and underlying mechanisms of cellular processes. Although cDNA-AFLP (Amplified Fragment Length Polymorphism) is a powerful method for analyzing differentially expressed genes, its use has been limited to the requirement of radioactive isotope use and the difficulty of isolating the bands of interest from a gel. Here, we describe a modified method for cDNA-AFLP that uses a fluorescence dye for detection and isolation of bands directly from a small size polyacrylamide gel. This method involves three steps: (i) preparation of cDNA templates, (ii) PCR amplification and differential display, and (iii) identification of differentially expressed genes. To demonstrate its utility and efficiency, differentially expressed genes during vegetative growth and appressorial development of Magnaporthe oryzae were analyzed. This method could be applied to compare gene expression profiles in a diverse array of organisms.

Occurrence of dsRNA Mycovirus (LeV-FMRI0339) in the Edible Mushroom Lentinula edodes and Meiotic Stability of LeV-FMRI0339 among Monokaryotic Progeny

  • Kim, Jung-Mi;Yun, Suk-Hyun;Park, Seung-Moon;Ko, Han-Gyu;Kim, Dae-Hyuk
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.460-464
    • /
    • 2013
  • dsRNA was found in malformed cultures of Lentinula edodes strain FMRI0339, one of the three most popular sawdust cultivated commercial strains of shiitake, and was also found in healthy-looking fruiting bodies and actively growing mycelia. Cloning of the partial genome of the dsRNA revealed the presence of the RdRp sequence of a novel L. edodes mycovirus (LeV), and sequence comparison of the cloned amplicon showed identical sequences sequence to known RNA-dependent RNA polymerase genes of LeV found in strain HKA. The meiotic stability of dsRNA was examined by measuring the ratio of the presence of dsRNA among sexual monokaryotic progeny. More than 40% of the monokaryotic progeny still contained the dsRNA, indicating the persistence of dsRNA during sexual reproduction. Comparing the mycelia growth of monokaryotic progeny suggested that there appeared to be a tendency toward a lower frequency of virus incidence in actively growing progeny.

Differential Induction of Pathogenesis-Related Proteins in the Compatible and Incompatible Interactions of Tomato Leaves with Xanthomonas campestris pv. vesicatoria (Xanthomonas campestris pv. vesicatoria와 토마토잎의 친화적, 불친화적 반응에서 병생성관련 단백질의 유도)

  • 김정동;황병국
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.53-60
    • /
    • 1995
  • Inoculation with the compatible strain Ds 1 of Xanthomonas campestris pv. vesicatoria caused brownish ad water-soaked lesions, but incompatible strain Bv5-4a produced hypersensitive symptoms with local necrosis on tomato (cv. Kwangyang) leaves. Bacterial populations of the compatible strains Ds 1 propagated more greatly than the incompatible strain Bv5-4a at the frist onset, but no differences were observed 5 days after inoculation. The bacterial infection induced the synthesis and accumulation of soluble proteins in tomato leaves, especially in the incompatible interaction. Native-polyacrylamide gel electrophoresis distinguished the soluble proteins in the tomato leaves infected by the compatible or incompatible strains. A protein of low molecular weight occurred only in the incompatible interaction. Some pathogenesis-related (PR) proteins, especially the 15, 18, 23, 26 and 54 kDa proteins, were detected only in the infected tomato leaves. In the two-dimensional electrophoresis, some proteins with different molecular weights (Mr. 21∼29 kDa) and the pI 8∼9 appeared more distinctly only in the incompatible interaction. These data suggest that the de novo synthesis of some PR proteins in tomato may be significant in defense against X. c. pv. vesicatoria.

  • PDF

Protective Effects of Ramie (Boehmeria nivea) against Oxidative Stress in C6 Glial Cells

  • Wang, Xiaoning;Cho, Sunghun;Kim, Ho Bang;Jung, Yong-Su;Cho, Eun Ju;Lee, Sanghyun
    • Korean Journal of Plant Resources
    • /
    • v.28 no.6
    • /
    • pp.675-681
    • /
    • 2015
  • β amyloid protein (Aβ) plays a critical role in the pathogenesis of Alzheimer's disease (AD) and possibly in Aβ-induced mitochondrial dysfunction and oxidative stress. Aβ can directly cause reactive oxygen species (ROS) production. Overproduction of ROS is considered to be involved in the pathogenesis of neurodegeneration of AD. Here, we investigated 9 kinds of ramie (Boehmeria nivea, (L.) Gaud., BN; hereafter denoted as BN) for their protective action against oxidative stress in a cellular system using C6 glial cells. We observed loss of cell viability and high levels of ROS generation after treatment with hydrogen peroxide (H2O2) and Aβ25-35. However, treatments with BN extracts led to an increase in cell viability and decrease in ROS production induced by H2O2 and Aβ25-35. In particular, the extracts of BN-01 (seobang variety from Seocheon) and BN-09 (local variety from Yeonggwang) showed excellent anti-oxidative properties. This indicates that BN extracts could prevent neurodegeneration by reducing oxidative stress in cells.

Nuclear Effectors in Plant Pathogenic Fungi

  • Surajit De Mandal;Junhyun Jeon
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.259-268
    • /
    • 2022
  • The nuclear import of proteins is a fundamental process in the eukaryotes including plant. It has become evident that such basic process is exploited by nuclear effectors that contain nuclear localization signal (NLS) and are secreted into host cells by fungal pathogens of plants. However, only a handful of nuclear effectors have been known and characterized to date. Here, we first summarize the types of NLSs and prediction tools available, and then delineate examples of fungal nuclear effectors and their roles in pathogenesis. Based on the knowledge on NLSs and what has been gleaned from the known nuclear effectors, we point out the gaps in our understanding of fungal nuclear effectors that need to be filled in the future researches.