• Title/Summary/Keyword: plant pathogenesis

Search Result 193, Processing Time 0.015 seconds

Role of a Phytotoxin Produced by Fusarium oxysporum f. sp. raphani on Pathogenesis of and Resistance to the Fungus (무 시들음병균이 생산하는 Phytotoxin의 병원성 및 저항성에서 역할)

  • Shim, Sun-Ah;Kim, Jin-Cheol;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Heung Tae;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.626-632
    • /
    • 2013
  • In the course of a developing screening method for resistant radish to Fusarium oxysporum f. sp. raphani, we found that the fungus produces phytotoxic compound against Raphanus sativus. The culture filtrate of F. oxysporum f. sp. raphani KR1 represented the strongest phytotoxicity when the fungus was incubated in the malt extract broth with 150 rpm at $25^{\circ}C$ for 14 days. Under bioassay-guided purification, we isolated a substance from liquid culture of F. oxysporum f. sp. raphani KR1, with phytotoxic effect against R. sativus. The compound was identified as fusaric acid by mass and nuclear magnetic resonance spectral analyses. Phytotoxicity of the compound against cruciferous vegetable crops, including radish, cabbage, and broccoli, was investigated. Fusaric acid represented phytotoxicity on radish seedlings by concentration dependant manner. And the phytotoxin demonstrated strong phytotoxicity on the resistant cultivars as well as susceptible cultivars of radish to F. oxysporum f. sp. raphani. In addition, fusaric acid isolated from the fungus also showed a potent phytotoxic efficacy against non-host Brassicaceae crops of the fungus such as cabbage and broccoli. The results demonstrate that fusaric acid produced by F. oxysporum f. sp. raphani is non-host-specific toxin and for screening of resistant radish to the fungal pathogen, spore suspension of the fungus without the phytotoxin has to be used.

Characterization of PR-10 gene derived from highly resistant '93-3-98' pear inoculated with scab (Venturia nashicola) (배 검은별무늬병(Venturia nashicola) 고도 저항성 '93-3-98' 유래 PR-10 유전자의 특성)

  • Chun, Jae An;Kim, Se Hee;Cho, Kang Hee;Kim, Dae Hyun;Choi, In Myong;Shin, Il Sheob
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • A PyrcpPR-10 gene with differentially expressed was isolated by using the suppression subtractive hybridization assay between '93-3-98' (highly resistant against scab caused by Venturia nashicola) and 'Sweat Skin'(highly susceptible) and analyzed the expression pattern according to organs and cultivars. The full length of PyrcpPR-10 was cloned as 743bp with 480bp's ORP, and was determined to encode a protein of 159 amino acid residues. On analyzing PyrcpPR-10 gene sequence compared with resistant and susceptible cultivars, 'Hwangsilri' (resistant), 'Gamcheonbae' (moderately resistant), 'Wonhwang' (moderately susceptible), 'Niitaka' (highly susceptible), and 'Sweat Skin' (highly susceptible) had identical gene sequence but 'Bartlett' (highly resistant) showed partly different sequences. The deduced amino acid sequence showed 64 ~ 98% homology and had the GXGGXG motif to known amino acid of other plants PR-10 by the BLAST X analysis. Among several organs or tissues, petal was showed highest expression level of PyrcpPR-10 gene followed by leaf, floral axis, bud, and bark. The expression level of PyrcpPR-10 gene was dramatically increased at 24 hr after inoculation in all cultivars and also up-regulated in accordance with resistant degree of cultivars. While resistant cultivars ('Bartlett', '93-3-98', and 'Hwangsilri') induced relatively high expression level of PyrcpPR-10 gene, susceptible cultivars ('Niitaka', and 'Sweat Skin') showed low expression level. PyrcpPR-10 gene is assumed that it is directly connected with defense mechanisms to pear scab.

Perilla frutescens Sprout Extracts Protected Against Cytokine-induced Cell Damage of Pancreatic RINm5F Cells via NF-κB Pathway (들깨 새싹 추출물의 췌장 RINm5F 세포에서 NF-κB 경로를 통한 사이토카인에 의한 손상 예방 효과)

  • Kim, Da Hye;Kim, Sang Jun;Jeong, Seung-Il;Yu, Kang-Yeol;Cheon, Chun Jin;Kim, Jang-Ho;Kim, Seon-Young
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.509-516
    • /
    • 2017
  • Perilla frutescens (L.) Britton var. sprouts (PFS) is a plant of the labiatae family. The purpose of this work was to assess the preventive effects of PFS ethanolic extracts (PFSEs) on cytokine-induced ${\beta}$-cell damage. Cytokines, which are released by the infiltration of inflammatory cells around the pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus. The combination of interleukin-$1{\beta}$ (IL-1), interferon-${\gamma}$ (IFN-${\gamma}$), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) induced formation of reactive oxygen species (ROS). Accumulation of intracellular ROS led to ${\beta}$-cell dysfunction and apoptosis. PFSEs possess antioxidant activity and thus lead to downregulation of ROS generation. Cytokines decrease cell viability, stimulate the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and induce the production of nitric oxide (NO). PFSEs prevented cytokine-induced cell viability in a dose-dependent manner. Incubation with PFSE resulted in significant reduction in cytokine-induced NO production that correlated with reduced levels of the iNOS and COX-2 protein expression. Furthermore, PFSE significantly decreased the activation of nuclear factor ${\kappa}B$ (NF-${\kappa}B$) by inhibition of $I{\kappa}B{\alpha}$ phosphorylation in RINm5F cells. In summary, our results suggest that the protective effects of PFSE might serve to counteract cytokine-induced ${\beta}$-cell destruction. Findings indicate that consumption of Perilla frutescens (L.) Britton var. sprouts alleviates hyperglycemia-mediated oxidative stress and pro-inflammatory cytokine-induced ${\beta}$-cell damage and thus has beneficial anti-diabetic effects.