• Title/Summary/Keyword: plant growth fermentation

Search Result 108, Processing Time 0.031 seconds

Effects of Composts on the Growth, Yield and Effective Components of Turmeric (Curcuma longa L.) (울금의 생육, 수량 및 품질에 미치는 퇴비의 효과)

  • Han, Hyo-Shim;Woo, Seo;Kim, Dong-Kwan;Heo, Buk-Gu;Lee, Kyung-Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.138-145
    • /
    • 2010
  • Curcuma longa L. (turmeric) is an important medicinal plant that has been historically used in herbal medicine and in the health food throughout Asia etc. Recently, the demands on rhizome of turmeric are increasing greatly by well-being boom, but there is not enough to meet the demands. To fulfill increasing demands, cultivation system strategies using the organic fertilizers are required to produce a greater amount of rhizome with good quality and yield. A field experiment was conducted to determine the effect of composts, NPK fertilizer(control, F), NPK + swine manure(SM) and NPK + fermentation manure from the wasted oriental medicine materials(OMWM), on rhizome yield and the content of bioactive components for quality. Our results showed that two compost applications can increase both rhizomes(24.1-25.9%) and curcumin(21.7-41.0%) yields, respectively, compared to F control. The content of amino acids increased significantly by SM and OMWM treatments. SM and OMWM application also increased the total phenol yields 7.8 and 8.7 g/10a compared with control 6.3 g/10a, the flavonoid yields 6.3 and 7.3 g/10a compared with control 5.3 g/10a, and also antioxidant activity 21.7 and 41%, respectively, as compared to the control. Especially, OMWM was more effective in total rhizomes yields and bioactivities and in the biosynthesis of curcumin and bioactive components than SM treatments, but the biological pathway was not clear, still. This experiment suggests that curcumin or bioactive components affected by adding SM and OMWM could increase the yields and quality of turmeric.

Effects of Plant Oils and Minerals for the Inhibition of Lipase Activity of Staphylococcus aureus Isolated from Fermented Pork Meat

  • Cho, Sang-Buem;Chang, Woo-Kyung;Kim, Yun-Jung;Moon, Hyung-In;Joo, Jong-Won;Choi, In-Soo;Seo, Kun-Ho;Kim, Soo-Ki
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.764-772
    • /
    • 2010
  • Staphylococcus aureus lipase is regarded as a virulence factor. The response of lipase activity to various factors can provide important insights concerning the prevention of S. aureus during meat fermentation. This study was conducted to evaluate the main effects of nutrients used in culture media, and their combined effects on the inhibition of lipase activity and cell growth of pathogenic S. aureus SK1593 isolated from fermented pork meat. A Plackett-Burman design was used to evaluate the main effects of variables, including olive oil, soybean oil, grapeseed oil, sesame oil, $CuSO_4$, $MgCl_2$, $KNO_3$, $CaCl_2$, and KCl. Significant negative effects on lipase activity were detected with soybean oil, grapeseed oil, $KNO_3$, and $CaCl_2$. Additionally, these nutrients were further selected as variables for the investigation of their combined effect on lipase activity, via response surface methodology. In order to confirm the regression model, a situation that only inhibits lipase activity was simulated. The predicted lipase activity and cell growth of the simulated situation were 14.0 U/mL and $9.6\;{\log}_{10}$ (CFU/mL), respectively, and the estimated value of those in the same medium showed 15.14 U/mL and $9.4\;{\log}_{10}$(CFU/mL) respectively. The lipase activity of the simulated medium was inhibited approximately 5-fold as compared to the basal medium, but no significant differences in cell counts were noted to exist between the basal and simulated media. These results suggest that soybean oil, grapeseed oil, $KNO_3$, and $CaCl_2$ can be used to inhibit the growth of pathogenic S. aureus during the process of meat fermentation.

Effects of Plant-origin Biological Active Materials on the Activities of Pathogenic Microbes and Rumen Microbes (식물유래 생리활성물질의 병원성 미생물 및 반추위 미생물 활성에 대한 영향)

  • 옥지운;이상민;임정화;이신자;문여황;이성실
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.709-718
    • /
    • 2006
  • In order to know the effects of Garlic, Scallion, Flavonoid, Urushiol, Anthocyanidin and Bio-MOS?? on pathogenic microbes and rumen anaerobic microbes, the growth rate of pathogens (including Escherichia coli O157, Salmonella paratyphi, Listeria monocytogenes and Staphylococcus aureus) and in vitro rumen microbial growth, gas production, ammonia concentration, carboxymethylcellulase(CMCase) activity, and microbial populations were investigated.The growth of pathogens was inhibited by supplementation of 0.1% Flavonoid, Scallion or Bio-MOS?? as biological active materials. And Scallion and Flavonoid had powerful antimicrobial properties on the pathogens applied in paper disc method.Although few effects by biological active materials disappeared in rumen fermentation in vitro, CMCase activity removed with supplementation of 1% of Flavonoid which had antimicrobial property in paper disc method. Scallion, having powerful antimicrobial property on pathogens and no inhibiting on rumen fermentation, might be a source in development of natural antimicrobial agent for ruminants.

Control of Powdery Mildew by Foliar Application of a Suspension of Cheonggukjang (청국장 현탁액 오이 엽면처리에 의한 흰가루병 방제효과)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Jee, Hyeong-Jin;Kwon, Jin-Hyeuk;Kim, Seuk-Chul
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.58-66
    • /
    • 2015
  • This study was conducted to evaluate control efficacy of a fermented food 'Cheonggukjang' against cucumber powdery mildew caused by Sphaerotheca fuliginea in greenhouse. Sterilized Daepung beans were inoculated with the rice straw as natural inoculum and then incubated for 72 hrs at $42^{\circ}C$ in the household cheonggkjang maker. After 72 hrs of cheonggukjang fermentation, white zymogens were grown on the surface of a sterile Daepung beans. The pH of the 72 hrs fermented soybean was not significantly changed and electrical conductivity was found to increase by about 2 times than before fermentation. The population density of soybean zymogen showed a peak of growth at 60 hrs after fermentation and the concentration of zymogen was $8.2{\times}10^7cfu/ml$. Soybean zymogen form of the colony was divided into three kinds of bacteria and a white and a large colony (WL) was predominant bacteria among those up to 60 hrs of fermentation. To control the cucumber powdery mildew, diluted solutions of cheonggukjang was applied from 6.0% to 30.0% on cucumber leaves and they showed injury symptoms on cucumber leaves in more than 15% of them. However, more than 6.0% diluted cheonggukjang solutions showed more than 77.8% control effect of cucumber powdery mildew at 15 days after treatment. The fermented bacteria of Chenggukjang were well established in the cucumber leaf area at 15 days after treatment. The antifungal activity of 10% diluted cheonggukjang solutions was excellent for four species of plant fungal pathogens, Colletotrichum gloeosporioides, Sclerotinia cepivorum, Rhizoctonia sloani and Phytophthora capsici in the dual culture test. Results indicated that foliar application of Cheonggukjang solution could be used for the control of powdery mildews occurring on organically cultivated cucumber.

Identification of Phenylethyl Alcohol and Other Volatile Flavor Compounds from Yeasts, Pichia farinosa SKM-l, Pichia anomala SKM-T, and Galactomyces geotrichum SJM-59

  • Mo, Eun-Kyoung;Kang, Hyo-Jin;Lee, Chang-Tian;Xu, Bao-Jun;Kim, Jae-Hoon;Wang, Qi-Jun;Kim, Jae-Cheon;Sung, Chang-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.800-808
    • /
    • 2003
  • Three strains of yeasts, Pichia farinosa SKM-1, Pichia anomala SKM-T, and Galactomyces geotrichum SJM-59, produced volatile flavor compounds during fermentation. To investigate these volatile flavor compounds, the liquid culture broth of the three yeast strains were extracted with methylene chloride, and then GC and GC-MS analyses were conducted. Flavor analyses revealed that 5, 12, and 15 kinds of volatile compounds were isolated, and 4, 8, and 11 volatile flavor compounds were identified, respectively. Phenylethyl alcohol was identified with the common volatile flavor compound of Pichia farinosa SKM-1, Pichia anomala SKM-T, and Galactomyces geotrichum SJM-59. 1H-indole-3-ethanol, a precursor of plant growth hormone, was identified from Pichia anomala SKM-T.

Diffusible and Volatile Antifungal Compounds Produced by an Antagonistic Bacillus velezensis G341 against Various Phytopathogenic Fungi

  • Lim, Seong Mi;Yoon, Mi-Young;Choi, Gyung Ja;Choi, Yong Ho;Jang, Kyoung Soo;Shin, Teak Soo;Park, Hae Woong;Yu, Nan Hee;Kim, Young Ho;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.33 no.5
    • /
    • pp.488-498
    • /
    • 2017
  • The aim of this study was to identify volatile and agardiffusible antifungal metabolites produced by Bacillus sp. G341 with strong antifungal activity against various phytopathogenic fungi. Strain G341 isolated from four-year-old roots of Korean ginseng with rot symptoms was identified as Bacillus velezensis based on 16S rDNA and gyrA sequences. Strain G341 inhibited mycelial growth of all phytopathogenic fungi tested. In vivo experiment results revealed that n-butanol extract of fermentation broth effectively controlled the development of rice sheath blight, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew, and red pepper anthracnose. Two antifungal compounds were isolated from strain G341 and identified as bacillomycin L and fengycin A by MS/MS analysis. Moreover, volatile compounds emitted from strain G341 were found to be able to inhibit mycelial growth of various phytopathogenic fungi. Based on volatile compound profiles of strain G341 obtained through headspace collection and analysis on GC-MS, dimethylsulfoxide, 1-butanol, and 3-hydroxy-2-butanone (acetoin) were identified. Taken together, these results suggest that B. valezensis G341 can be used as a biocontrol agent for various plant diseases caused by phytopathogenic fungi.

Antiviral Activity of Antibiotic Peptaibols, Chrysospemins B and D, Produced by Apiocrea sp. 14T against TMV Infection

  • Kim, Young-Ho;Yeo, Woon-Hyung;Kim, Young-Sook;Chae, Soon-Young;Kim, Kap-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.522-528
    • /
    • 2000
  • A total of about 300 fungal isolates from forest havitats were screened for inhibitors of tobacco mosaic virus (TMV) infection using its local lesion host, Nicotiana tabacum cv. Xanthi nc. Ine of the isolates, 14T, showed a strong activity against TMV infection, and was identified as an Apiocrea sp. based on its morphological characterstics. Rice was an optimum culture medium for its fermentation, and two antiviral compounds, KGT 141 and KGT 142, were resolved from the rice culture through column chromatography, TLC, and HPLC. By NMR and FAB-MS, the two compounds were identified as chrysospermins B (KGT 141) and D (KGT 142), both of which are peptaibols with 19-mer amino acids possessing an acetylated N-terminus and a hydroxy-amino acid (tryptophanol) at the C-terminus. Both compounds showed inhibitory activities against TMV infection, but chrysospermin D showed the stronger activity than chrysospermin B. The former of $100{\;}\mu\textrm{g}/ml$ and 54.7% at $10{\;}\mu\textrm{g}/ml$, respectively. Furthermore, the chrysospermins were highly cytotoxic toward cancer cell lines of PC-3 (prostrate) and K562 (leukemia), and inhibited growth of the Gram-positive bacteria tested, especially the plant pathogenic bacterium Corynebacterium lilium. To the best of our knowledge, this is the first report on the inhibition of plant virus infection by antimicrobial peptaibols.

  • PDF

Effect of agricultural materials of traditional agriculture on control of rice blast (Pyricularia oryzae)

  • Jang, Se Ji;Yun, Young Beom;Kim, Yeon Ji;Jeong, Jang Yong;Kuk, Yong In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.182-182
    • /
    • 2017
  • The objective of this research was to determine controlling effects on rice blast (Pyricularia oryzae) in rice plants by using plant extracts from different extraction methods (water, boiling water, fermentation, and ethanol) from 38 agricultural materials of traditional agriculture. Rice blast was completely suppressed by 3% ethanol extracts in Rheum palmatum roots, and suppressed 97% and 77% by 10% ethanol extracts in onion bulb and pine tree leaves, respectively in a laboratory test. However, other agricultural materials showed low effect on suppression of rice blast. Additionally, in a seedling test, rice injury of two cultivars (Ilmibyeo and Hopyoungbyeo) against rice blast was reduced 40-71%, 29-63%, and 23-63% by 5 and 10% ethanol extracts in Rheum palmatum roots, onion bulb, and pine tree leaves, respectively, compared with non-treated controls. Rice injury of two cultivars (Ilmibyeo and Hopyoungbyeo) against rice blast was reduced by 21-55%, 23-46%, and 5-39% in response to Rheum palmatum roots, onion bulb, and pine tree leaf applications at 100, 200 and $400g/m^2$ at 0 day after seeding, respectively, compared with non-treated controls. Rice plants did not show any leaf injuries and growth reduction after treatments of the Rheum palmatum roots, onion bulb, and pine tree leaf extracts or soil application. Thus, the above materials may be used for controlling rice blast in organically produced rice fields.

  • PDF

A Cellulolytic and Xylanolytic Enzyme Complex from an Alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14

  • Phitsuwan, Paripok;Tachaapaikoon, Chakrit;Kosugi, Akihiko;Mori, Yutaka;Kyu, Khin Lay;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.893-903
    • /
    • 2010
  • A cellulolytic and xylanolytic enzyme complex-producing alkalothermoanaerobacterium strain, Tepidimicrobium xylanilyticum BT14, is described. The cell was Grampositive, rod-shaped, and endospore-forming. Based on 16S rRNA gene analysis and various lines of biochemical and physiological properties, the strain BT14 is a new member of the genus Tepidimicrobium. The strain BT14 cells had the ability to bind to Avicel, xylan, and corn hull. The pH and temperature optima for growth were 9.0 and $60^{\circ}C$, respectively. The strain BT14 was able to use a variety of carbon sources. When the bacterium was grown on corn hulls under an anaerobic condition, a cellulolytic and xylanolytic enzyme complex was produced. Crude enzyme containing cellulase and xylanase of the strain BT14 was active in broad ranges of pH and temperature. The optimum conditions for cellulase and xylanase activities were pH 8.0 and 9.0 at $60^{\circ}C$, respectively. The crude enzyme had the ability to bind to Avicel and xylan. The analysis of native-PAGE and native-zymograms indicated the cellulosebinding protein showing both cellulase and xylanase activities, whereas SDS-PAGE zymograms showed 4 bands of cellulases and 5 bands of xylanases. Evidence of a cohesinlike amino acid sequence seemed to indicate that the protein complex shared a direct relationship with the cellulosome of Clostridium thermocellum. The crude enzyme from the strain BT14 showed effective degradation of plant biomass. When grown on corn hulls at pH 9.0 and $60^{\circ}C$ under anaerobic conditions, the strain BT14 produced ethanol and acetate as the main fermentation products.

Evaluation of Lipid Accumulation's Inhibitory Activity on 3T3-L1 Cells with Red Yeast Barley Extracts (홍맥 추출물의 3T3-L1세포에 대한 지방 축적 저해 활성평가)

  • Kwon, Gi-Seok;Kim, Byung-Hyuk;Lee, Jun-Hyeong;Hwang, Hak-Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.192-198
    • /
    • 2021
  • Red yeast rice has been extensively used as food and traditional medicine for thousands of years in East Asian countries. It is produced by the fermentation of a particular yeast (in general, Monascus purpureus) as rice and various cereals (barley, soybean, etc.). Monascus sp. produces many secondary metabolites during its growth, including pigments, monacolins, and γ-aminobutyric acid. Some metabolites―specifically, monacolin K, γ-aminobutyric acid, dimerumic acid, and monascus pigments―have been reported to lower cholesterol and blood pressure while showing anti-obesity effects. In this study, we investigated the anti-obesity effect of ethanol extract from red yeast barley (RYB) fermented with Monascus sp. BHN-MK 2 on 3T3-L1 cells. The anti-obesity effects of RYB extract were examined: its lipid accumulation inhibitory effect was tested by Oil Red O staining, and obesity-related mRNA expression levels were tested by real-time RT-PCR in MDI stimulated 3T3-L1 cells. The intracellular lipid content of MDI-stimulated 3T3-L1 cells decreased significantly to 5.04%, 12.24%, and 23.52% in response to 200, 400, and 800 ㎍/ml RYB, respectively. Moreovers, we evaluated that RYB extract significantly downregulated the expression of C/EBPα, SREBP-1, and PPAR-γ gene in a dose-dependent manner. As a result, red yeast barley ethanol extracts exerted the strongest anti-obesity effects. Also, the results indicate that red yeast barley could be used as a functional anti-obesity food material.