• Title/Summary/Keyword: plant genomic DNA

Search Result 370, Processing Time 0.027 seconds

Platform of Hot Pepper Stress Genomics: Indentification of Stress Inducible Genes in Hot Pepper (Capsicum annuum L.) Using cDNA Microarray Analysis

  • Chung, Eun-Jo;Lee, Sanghyeob;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.81.1-81
    • /
    • 2003
  • Although plants have evolved to possess various defense mechanisms from local biotic and abiotic stressors, most of yield loss is caused by theses stressors. Recent studies have revealed that several different stress responsive reactions are inter-networking. Therefore, the identification and dissection of stress responsive genes is an essential and first step towards understanding of the global defense mechanism in response to various stressors. For this purpose, we applied cDNA microarray analysis, because it has powerful ability to monitor the global gene expression in a specific situation. To date, more than 10,000 non-redundant genes were identified from seven different cDNA libraries and deposited in our EST database (http://plant.pdrs.re.kr/ks200201/pepper.html). For this study, we have built 5K cDNA microarray containing 4,685 unigene clones from three different cDNA libraries. Monitoring of gene expression profiles of hot pepper interactions with biotic stress, abiotic stresses and chemical treatments will be presented. Although this work shows expression profiling at the sub-genomic level, this could be a good starting point to understand the complexity of global defense mechanism in hot pepper.

  • PDF

FISH Karyotype Analysis of Four Wild Cucurbitaceae Species Using 5S and 45S rDNA Probes and the Emergence of New Polyploids in Trichosanthes kirilowii Maxim

  • Waminal, Nomar Espinosa;Kim, Hyun Hee
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.869-876
    • /
    • 2015
  • Wild relative species of domesticated crops are useful genetic resources for improving agronomic traits. Cytogenetic investigations based on chromosome composition provide insight into basic genetic and genomic characteristics of a species that can be exploited in a breeding program. Here, we used FISH analysis to characterize the ploidy level, chromosome constitution, and genomic distribution o f 5S and 4 5S r ibosomal DNA (rDNA) in four wild Cucurbitaceae species, namely, Citrullus lanatus (Thunb.) Mansf. var. citroides L. H. Bailey (2n = 22), Melothria japonica Maxim. (2n = 22), Sicyos angulatus L. (2n = 24), and Trichosanthes kirilowii Maxim. (2n = 66, 88, 110 cytotypes), collected in different areas of Korea. All species were diploids, except for T. kirilowii, which included hexa-, octa-, and decaploid cytotypes (2n = 6x = 66, 8x = 88, and 10x = 110). All species have small metaphase chromosomes in the range of $2-5{\mu}m$. The 45S rDNA signals were localized distally compared to the 5S rDNA. C. lanatus var. citroides and M. japonica showed one and two loci of 45S and 5S rDNA, respectively, with co-localization of rDNA signals in one M. japonica chromosome. S. angulatus showed two co-localized signals of 5S and 45S rDNA loci. The hexaploid T. kirilowii cytotype showed five signals each for 45S and 5S rDNA, with three being co-localized. This is the first report of hexaploid and decaploid cytotypes in T. kirilowii. These results will be useful in future Cucurbitaceae breeding programs.

Isolation, Restriction Mapping, and Promoter Sequence Analysis of an Isoperoxidase Gene from Korean-Radish, Raphanus sativus L.

  • Park, Jong-Hoon;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.52-57
    • /
    • 1996
  • A specific DNA fragment from Korean radish (Raphanus sativus L.) was amplified by performing PCR with oligonucleotide primers which correspond to the highly conserved regions of plant peroxidases. The size of the PCR product was ca. 400 bp, as expected from the known plant peroxidase genes. Comparison of the nucleotide and deduced amino acid sequences of the PCR product to those of other plant peroxidase-encoding genes revealed that the amplified fragment corresponded to the highly conserved region I and III of plant peroxidases. By screening a genomic library of Korean radish using the amplified fragment as a probe, two positive clones, named prxK1 and prxK2, were isolated. Restriction mapping studies indicated that the 5.2 kb Sail fragment of the prxK1 clone and the 4.0 kb EcoRI fragment of the prxK2 clone encode separate isoperoxidase genes. Analyses of the promoter region of the prxK1 clone shows that putative CAAT box, CMT box, and TGA1b binding sequence (5' TGACGT) are present 718 bp upstream from the start codon.

  • PDF

Expression Patterns and Isolation of Genomic DNA of a Metallothionein-like Gene from Citrus (Citrus unshiu Marc. cv. Miyagawa) (감귤에서 분리한 Metallothionein 유전자의 발현분석 및 게놈 DNA)

  • 김인중
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.231-237
    • /
    • 2001
  • A cDNA clone encoding metallothionein-like protein (CitMT45), which was reported by Moriguchi et al. (1998), was isolated from Citrus fruits cDNA library through differential screening. Our cDNA clone has longer 5'untranslated region, compared to it isolated by Moriguchi et al. (1998). RNA blot analysis showed that the mRNA was abundant in fleshes than peels, leaves, and flowers, as a single transcript. However, regardless of tissue types, the blots showed the similar expression patterns in the process of development with some different profile. These results suggest that CitMT45 may play important roles in the development and/or senescence of various tissues of Citrus. A genomic clone corresponding to CitMT45 was isolated and found to have three exons and two introns. A primer extension analysis suggested that the transcription of CitMT45 gene was started at three start sites with different degrees. The 5'-flanking region was shown to contain a putative metal regulatory element (MRE) and low- temperature responsive element which suggests the possibility of metal-and cold-regulated transcription, respectively.

  • PDF

Uptake and Expression of Foreign Genes Using Seed-Derived Embryos of Rice (벼 종자 유래 배에서 외래유전자의 도입과 발현)

  • 정구흥
    • Journal of Plant Biology
    • /
    • v.37 no.1
    • /
    • pp.77-83
    • /
    • 1994
  • DNA uptake in dry embryos of rice by DNA imbibition was detected by monitoring the expression of chimeric vectors. The selective markers of expression vectors used were ${\beta}-glucuronidase$ ronidase (GUS) and hygromycin phosphotransferase (HPT) genes under the control of CaMV35 S promoter. Frequency of transient expression of the foreign gene was generally 30-50% varying according to the types of vectors and rice cultivars. Dot blot analysis and DNA sequence analysis of inverse polymerase chain reaction products showed that selected rice in hygromycin B (HmB) medium had HPT gene and CaMV35S promoter DNA sequence in genomic DNA of rice. To investigate what ratio of rice having two marker genes simultaneously as rice embryos imbibed the vector DNA having two HPT and GUS gene, transform ants selected in lImB medium were subjected to PCR for GUS gene. It was shown that about 90 percentage of surviving ones in HmB medium had GUS gene.S gene.

  • PDF

Isolation of SYP61/OSMl that is Required for Salt Tolerance in Arabidopsis by T-DNA Tagging (애기장대에서 고염 스트레스 내성에 관여하는 OSM1/SYP61 유전자의 동정)

  • Kim, Ji-Yeon;Baek, Dong-Won;Lee, Hyo-Jung;Shin, Dong-Jin;Lee, Ji-Young;Choi, Won-Kyun;Kim, Dong-Giun;Chung, Woo-Sik;Kwak, Sang-Soo;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2006
  • Salt stress is one of major environmental factors influencing plant growth and development. To identify salt tolerance determinants in higher plants, a large-scale screen was conducted with a bialaphos marker-based T-DNA insertional collection of Arabidopsis ecotype C24 mutants. One line for salt stress-sensitive mutant (referred to as ssm1) exhibited increased sensitivity to both ionic (NaCl) and nonionic (mannitol) osmotic stress in a root growth assay. This result suggests that ssm1 mutant is involved in ion homeostasis and osmotic compensation in plant. Molecular cloning of the genomic DNA flanking T-DNA insert of ssm1 mutant was achieved by mutant genomic DNA library screening. T-DNA insertion appeared in the first exon of an open reading frame on F3M18.7, which is the same as AtSYP61. SSM1 is SYP61/OSM1 that is a member of the SNARE superfamily of proteins required for vesicular/target membrane fusions and factor related to abiotic stress.

Introduction of VP6 Gene into Potato Plant by Agrobacterium-mediated Transformation and Analysis of VP6 Expression in Transgenic Potatoes (Rotavirus VP6 유전자의 감자식물체내로의 도입과 형질전환체의 발현분석)

  • Youm, Jung-Won;Jeon, Jae-Heung;Jung, Jae-Yeol;Lee, Byoung-Chan;Kang, Won-Jin;Kim, Mi-Sun;Kim, Chul-Joong;Joung, Hyouk;Kim, Hyun-Soon
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.93-98
    • /
    • 2002
  • A VP6 fragments was subcloned with BamHI in the binary pMBP-1 vector under Califlower Mosaic Virus (CaMV) 355 promoter and neomycin phosphotransferase II (npt II) gene. The recombinant binary vector was mobilized into Agrobacterium-tumefaciens LBA4404 by the freeze-thaw method and potato (Solanum tubensum L. cv Desiree) was transformed by modified leaf-disc cocultivation. Shoots were induced on MS medium with 0.01 mg/L NAA, 0.1 mg/L GA$_3$, 2.0 mg/L Zeatin, 100.0 mg/L kanamycin, 500.0 mg/L carbenicillin. In order to identify the copy number of VP6 into potato plant, total genomic DNA was isolated from transgenic potato and analysed by Southern blotting. Genomic DNA and total mRNA analysis demonstrated the incorporation of the foreign gene into the potato genome, as well as their transcription.

A Quick and Safe Method for Fungal DNA Extraction

  • Chi, Myoung-Hwan;Park, Sook-Young;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.108-111
    • /
    • 2009
  • DNA-based studies, including cloning and genotyping, have become routine in fungal research laboratories. However, preparation of high-quality DNA from fungal tissue requires much time and labor and is often a limiting step for high-throughput experiments. We have developed a quick and safe (QS) DNA extraction method for fungi. Time efficiency and safety in the QS method were achieved by using plate-grown mycelia as the starting material, by eliminating phenol-chloroform extraction procedures, and by deploying a simple electric grinder. This QS method is applicable not only to a broad range of microbial eukaryotes, including true fungi and oomycetes, but also to lichens and plants.

Development of Potato Virus Y Resistant Tobacco Plant by Transformation of the Untranslatable Viral Coat Protein Encoding cDNA (감자 바이러스 Y 비전이성 외피단백질 cDNA의 형질전환에 의한 바이러스 저항성 연초품종 개발)

  • 이청호;이영기;강신웅;박성원;김상석;박은경
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.2
    • /
    • pp.117-123
    • /
    • 1997
  • Viral coat protein (CP) encoding cDNA with artificial start and stop codons was synthesized by reverse-transcriptase polymerase chain reaction (RT-PCR) from the Korean isolate of potato virus Y-vein nectrosis strain (pVY-VN). To make PVY CP cDNA to untranslatable form, three stop codons were inserted near the start codon by "megaprimer-PCR" method. The untranslatable CP cDNA was subcloned to plant expression vector and transferred to N. tabacum cv. NC82 by Agrobacterium-mediated transformation. Highly resistant plants to PVY infection were screened, based on symptom development after mechanical virus inoculation. By genomic PCR and Southern blot analysis, one or more copies of the untranslatable CP gene were found in all transformants. From northern blot analysis, highly resistant transgenic lines had very low level of CP transcript but susceptible lines had high level, suggesting resistance to PVY infection should be related to RNA-mediated mechanism.mechanism.

  • PDF

Transformation of Birdsfoot trefoil by BcHSP17.6 Gene using Agrobacterium tumefaciens (BcHSP17.6 유전자 도입에 의한 버즈풋 트레포일의 형질전환)

  • 김기용;성병렬;임용우;최기준;임영철;장요순;정의수;김원호;김종근
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.3
    • /
    • pp.145-150
    • /
    • 2001
  • This study was conducted to obtain the transformed birdsfoot trefoil (Lotus corniculatus L.) plants with BcHSP17.6 gene using Agrobacterium turnefaciens LBA4404 and we confirmed transformed gene from the regenerated birdsfoot trefoil plants. The expression vector, pBKH4 vector, harboring BcHSP17.6 gene was used for production of transgenic birdsfoot trefoil plants. The callus of birdsfoot trefoil was cocultivated with Agrobacteriurn turnefaciens and transformed calli were selected on kanamycin-containing SH-kc medium to regenerate into plants. The transformed birdsfoot trefoil plants were produced 4 momths after cultivation on BOi2Y medium. The transgenic birdsfoot trefoil plants were analyzed by isolation of genomic DNA and genomic Southern hybridization using a -32P labelled BcHSPl7.6 fragments. (Key words : Birdsfoot trefoil, Transgenic plant. BcHSP17.6 gene, Callus induction, Plant regeneration)

  • PDF