• Title/Summary/Keyword: plant genomic DNA

Search Result 371, Processing Time 0.024 seconds

Development and Molecular Characterization of Novel Polymorphic Genomic DNA SSR Markers in Lentinula edodes

  • Moon, Suyun;Lee, Hwa-Yong;Shim, Donghwan;Kim, Myungkil;Ka, Kang-Hyeon;Ryoo, Rhim;Ko, Han-Gyu;Koo, Chang-Duck;Chung, Jong-Wook;Ryu, Hojin
    • Mycobiology
    • /
    • v.45 no.2
    • /
    • pp.105-109
    • /
    • 2017
  • Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.

Introduction of Thermotolerant Gene into Rice Plant by Agrobacterium Mediated Transformation (Agrobacterium을 이용한 내열성 유전자의 벼로의 형질전환 및 발현)

  • Lee, Byung-Hyun;Lee, Hyo-Shin;Won, Sung-Hye;Jo, Jin-Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.17
    • /
    • pp.39-43
    • /
    • 1999
  • To investigate the function of chloroplast-localized small HSP in rice, the cDNA, Oshsp21, was introduced into rice plants via Agrobacterium-mediated gene transfer system. Calli induced from rice immature embryos were co-cultivated with a A. tumafaciens EHA101 that contained a plasmid, pIHSP21. The efficiency of plant regeneration from the calli co-cultivated with the Agrobacterium was about 30%. PCR and Southern blot analyses using genomic DNA revealed that gene for the chloroplast small HSP was introduced into the genome of rice. Expression of transgene was investigated by northern blot analysis. Results indicate that the transgene, Oshsp21, was constitutively expressed at normal growth temperature.

  • PDF

Expression of Antisense Polygalacturonase Gene in Transgenic Tomato (형질전환 토마토에서 Antisense Polygalacturonase 유전자의 발현)

  • 김영미;김용환;이성갑;임명호;송경수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.6
    • /
    • pp.351-355
    • /
    • 1995
  • A truncated Polygalacturonase (PG) cDNA was fused in reverse orientation to the CaMV 35S promoter of the binary vector pCA643, and introduced into tomato cells by Agrobaderium - mediated transformation. Transformed cells were selected using kanamycin as select agent then regenerated into plants. After selfed, one transgenic line (T9), was germinated and grown on MS medium containing 1 mg/mL of kanamycin Genomic Southern analysis of a T9 progeny with labelled PG2 cDNA probe showed a single antisense PC fragment as well as the endogenous PG2 gene, suggesting that PC antisense gene was integrated into tomato genome. Northern blot analysis demonstrated that the antisense RNA was produced from the transgene at much tiger level than the endogenous PG2 gene. Polygalacturonase activity analysis of the fruit from transgenic plants demonstrated that the antisense transgene expression caused 4 to 60% reduction of endogenous PG activity.

  • PDF

Amino Acid Biosynthesis and Gene Regulation in Seed (종자내 아미노산 합성 조절 유전자에 관한 연구)

  • ;;;;;Fumio Takaiwa
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.61-74
    • /
    • 1996
  • Human and monogastric animals can not synthesize 10 out of the 20 amino asids and therefor need to obtain these from their diet. The plant seed is a major source of dietary protein. It is particular important in their study to increase nutritional quality of the seed storage proteins. The low contents of lysine, asparagine and threonenein various cereal seeds and of cystein and methionine. In legume seeds is due to the low proportions of these amino acids in the major storage proteins, we have tried to apply the three strategies; (1) mutagenesis and selection of specific amino acid analogue resistance, (2) cloning and expression study of lysine biosynthesis related gene, (3) transfomation of lysine rich soybean glycinin gene. The 5-methyltryptophan (5MT) resistant cell lines, SAR1, SAR2 and SAR3 were selected from anther derived callus of rice (Oryza sativa L. "Sasanishiki"). Among these selected cell lines, two (SAR1 and SAR3) were able to grow stably at 200 mg/L of 5MT. Analysis of the freed amino acids in callus shows that 5MT resistant cells (SAR3) accumulated free tryptophan at least up to 50 times higher than those that of the higher than of SAS. These results indicated that the 5MT resistant cell lines are useful in studies of amino acid biosynthesis. Tr75, a rice (Oryza sativa L., var. Sasanishiki) mutant resistant to 5MT was segregated from the progenies of its initial mutant line, TR1. The 5MT resistant of TR75 was inherited in the M8 generations as a single dominant nuclear gene. The content of free amino acids in the TR75 homozygous seeds increased approximately 1.5 to 2.0 fold compared to wild-type seeds. Especially, the contents of tryptophan, phenylalanine and aspartic acid were 5.0, 5.3 and 2.7 times higher than those of wild-type seeds, respectively. The content of lysine is significantly low in rice. The lysine is synthesized by a complex pathway that is predominantly regulated by feedback inhibition of several enzymes including asparginase, aspatate kinase, dihydrodipicolinat synthase, etc. For understanding the regulation mechanism of lysine synthesis in rice, we try to clone the lysine biosynthetic metabolism related gene, DHPS and asparaginase, from rice. We have isolated a rice DHPS genomic clone which contains an ORF of 1044 nucleotides (347 amino acids, Mr. 38, 381 daltons), an intron of 587 nucleotides and 5'and 3'-flanking regions by screening of rice genomic DNA library. Deduced amino acid sequence of mature peptide domain of GDHPS clone is highly conserved in monocot and dicot plants whereas that of transit peptide domain is extremely different depending on plant specie. Southern blot analysis indicated that GDHPS is located two copy gene in rice genome. The transcripts of a rice GDHPS were expressed in leaves and roots but not detected in callus tissues. The transcription level of GDHPS is much higher in leaves indicating enormous chloroplast development than roots. Genomic DNA clones for asparaginase genes were screened from the rice genomic library by using plaque hybridization technique. Twelve different genomic clones were isolated from first and second screening, and 8 of 12 clones were analyzed by restriction patterns and identified by Southern Blotting, Restriction enzyme digestion patterns and Southern blot analysis of 8 clones show the different pattern for asparaginase gene. Genomic Southern blot analysis from rice were done. It is estimated that rice has at least 2-3 copy of asparaginase gene. One of 8 positive clones was subcloned into the pBluescript SK(+) vector, and was constructed the physical map. For transformation of lysine rich storage protein into tobacco, soybean glycinin genes are transformed into tobacco. To examine whether glycinin could be stably accumulated in endosperm tissue, the glycinin cDNA was transcriptionally fused to an endosperm-specific promotor of the rice storage protein glutelin gene and then introduced into tobacco genomic via Agrobacterium-mediated transformation. Consequently the glycinin gene was expressed in a seed-and developmentally-specific manner in transgenic tobacco seeds. Glycinin were targeted to vacuole-derived protein bodies in the endosperm tissue and highly accumulated in the matrix region of many transgenic plant (1-4% of total seed proteins). Synthesized glycinin was processed into mature form, and assembled into a hexamer in a similar manner as the glycinin in soybean seed. Modified glycinin, in which 4 contiguous methionine residues were inserted at the variable regions corresponding to the C - teminal regions of the acidic and basic polypeptides, were also found to be accumulated similarly as in the normal glycinin. There was no apparent difference in the expression level, processing and targeting to protein bodies, or accumulation level between normal and modified glycinin. glycinin.

  • PDF

Isolation of an actin promoter for strong expression of transgenes in the orchid genus Dendrobium

  • Koo, Ja Choon
    • Journal of Plant Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.27-36
    • /
    • 2013
  • We isolated and functionally characterized a Dendrobium Actin1 (DmACT1) promoter that drives strong gene expression in the orchid genus Dendrobium. A genomic fragment containing the region 3227 bp upstream of the coding region of DmACT1 was obtained by inverse PCR. Detailed comparison of the full-length cDNA and genomic sequences revealed that DmACT1 has a 1374 bp first intron in the 5' UTR. However, the 5' flanking sequences upstream of the coding region showed no obvious sequence similarities compared to those of known promoters, including plant actin promoters. Serial deletion constructs of the 5' flanking region from the translation initiation codon were fused to the coding sequence of a GUS/luciferase fusion reporter to identify the regulatory elements necessary for promoter activity. Transient assays in the flowers of Dendrobium revealed that the 5' UTR-intron greatly enhanced promoter activity. Moreover, the DmACT1 promoter with its 5' UTR-intron yielded approximately 10-fold higher reporter activity than the rice Act1 promoter-intron. Our data suggest that the DmACT1 promoter with its 5' UTR-intron is a useful tool for strong expression of transgenes in Dendrobium orchids.

Technical Development for Large DNA Fragment Transformation in Plants

  • Park, Su-Ryun;Seo, Mi-Suk;Lee, Sang-Kug;Park, Jee-Young;Kim, Hye-Ran;Lee, Hyo-Yeon;Bang, Jae-Wook;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • For large DNA fragment transformation in dicots and monocots, BIBAC2 vector system was applied to Arabidopsis thaliana and Oryza sativa L. cv. Jinmi as a model plant, respectively. For Arabidopsis, the Th1 gene in T23L3 BAC clone whose size is about 90 kb was used as the target gene source for transformation. Because T23L3 BAC clone was originally constructed in pBelloBAC11, the target gene was reconstructed into BIBAC2. As the results of reconstruction, 476 colonies were survived in selection medium containing 40 mg/L kanamycin. In colony hybridization analysis, 24 out of 476 colonies exhibited positive signals. In the pulsed-field gel electrophoresis analysis, 11 out of 24 positive clones exhibited the band at the location of 90 kb. In Southern hybridization, positive signal band at the location of 90 kb was observed in all 11 transformants. Using these verified clones, Agrobacterium-mediated transformation was applied to Arabidopsis thaliana th1-201 mutant for genetic complementation test. Twelve thousands T$_1$ seeds were harvested, and antibiotic selection test is being analyzed to verify whether these seeds were transformed. for rice, COR356 that contains 150 kb human genomic DNA in a BIBAC2 vector was used as the target gene. As the results of transformation, 151 out of 210 co-cultivated calli were survived in selection medium containing 5 mg/L hygromycin, and 45 out of 151 survived calli were regenerated into plants. Transformation efficiency was 21.6%. Progeny test using 71 seeds is being analyzed now. These results provide the potential that large DNA fragments can be transferred into both dicots and monocot by Agrobacterium-mediate d transformation system.

  • PDF

Genetic relationships and molecular authentication of plant origins and the commercial medicinal herbs in peony using RAPD markers

  • Bang, Kyong-Hwan;Jung, Jin-Ho;Kim, Ok-Tae;Chung, Jong-Wook;Ham, In-Hye;Seong, Nak-Sul;Luo, Rong;Zhang, Gui-Jun;Choi, Ho-Young
    • Advances in Traditional Medicine
    • /
    • v.7 no.1
    • /
    • pp.26-33
    • /
    • 2007
  • Genetic polymorphism and molecular authentication were investigated with the commercial medicinal herb, Peony (Paeonia spp.), using random amplified polymorphic DNA (RAPD) markers. To identify the polymorphism of the RAPD patterns among plant origins, 20 different random primers were applied to the genomic DNA extracted from Paeonia spp. plants such as Paeonia (P.) lactiflora, P. officinale and P. japonica. Ten primers out of 20 primers could be used to discriminate the plant species in the same genus and 72 out of 81 scored DNA fragments (88.9%) generated with these primers were polymorphic. Especially, four primers, such as OPA1, OPA3, OP9, and OPA13, were useful to discriminate the plant origins among the species of Peony. In the results of cluster analysis using RAPD data obtained from the 10 primers, Peony (Paeonia spp.) plants used in this study were grouped into the two distinctive clusters, genetically. Herb medicine, especially P. lactiflora, were easily identified, when species-specific primers were applied to the investigation for discriminating herb medicine currently traded in domestic herb market, Kyungdongmart. Consequently, RAPD analysis was useful method to discriminate plant origins and the commercial medicinal herbs, Paeonia spp..

Gene Analysis of A Fruit-specific Thaumatin-like Protein, VVTL1-homolog, from Campbell Cultivar of Grape (포도 캠벨 품종으로부터 과육 특이발현 VVTL1-homolog 유전자의 분석)

  • 김인중;김석만
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.255-261
    • /
    • 2001
  • Vitis vinifera thaumatin-like protein (VVTL1) is a fruit-specific and ripening-related protein in grape. In order to isolate VVTL1-homolog gene and fruit-specific promoter from Campbell cultivar, we isolated a genomic clone containing VVTL1-homolog gene from grape genomic library through plaque hybridization. VVTL1-homolog gene has an intronless genomic structure, which the pattern is matched with those of other PR5 genes such as osmotin and osmotin-like protein genes. Transcription start site was determined by primer extension analysis. The promoter region of VVTL1-homolog gene contains a sequence or structure, especially the location and number of TCA box and ABRE (abscisic acid-responsive element), distinct from other reported plant PR5 genes, though with several known functional elements such as a TATA box and CAAT box. These results suggested that VVTL1-homolog gene may be regulated by a plant hormone, abscisic acid, and one or several stresses such osmotic pressure and pathogen infection. The isolation of fruit-specific promoter may be helpful to breed a genetically modified grape with valuable phenotype or materials in fruits.

  • PDF

Silencing of CaCDPK4 ( Capsicum annuum Calcium Dependent Protein Kinase) and ItsOrtholog, NbCDPK5 Induces Cell Death in Nicotiana benthamiana

  • Eunsook Chung;Kim, Young-Cheol;Oh, Sang-Keun;Younghee Jung;Kim, Soo-Yong;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.77.1-77
    • /
    • 2003
  • We have isolated a full-length cDNA clone, CaCDPK4 encoding a typical calcium-dependent protein kinase (CDPK) from hot pepper cDNA library. Genomic southern blot analysis showed that it belongs to a multigene family, but represents a single copy gone in hot pepper genome. RNA expression pattern of this gene revealed that it is induced by infiltration of Xanthomonas axonopodis pv. glycines Bra into hot pepper leaves but not by water deficit stress. However, high salt treatment of NaCl (0.4 M) solution to hot pepper plants strongly induced CaCDPK4 gene. In addition, this gene is weakly responsive to the exogenous application of salicylic acid or ethephon. Biochemical study of the GST-CaCDPK4 recominant protein showed that it autophosphorylates in vitro and the presence of EGTA, a calcium chelater, eliminates the kinase activity of the recombinant protein. As a way to identify the in vivo function of CaCDPK4 in plants, VIGS (Virus-Induced Gene Silencing) was employed. Agrobacterium-mediated TRV silencing construct containing the kinase and calmodulin domain of CaCDPK4 resulted in cell death of Nicotiana benthamiana plants. A highly homologous H benthamiana CDPK gene, NbCDPK5, to CaCDPK4 was cloned from N. benthamiana cDNA library. VIGS of NbCDPK5 also resulted in cell death. The molecular characterization of this cell death phenotype is being under investigation.

  • PDF

A Rapid and Simple Method for DNA Preparation of Magnaporthe oryzae from Single Rice Blast Lesions for PCR-Based Molecular Analysis

  • Liying, Dong;Shufang, Liu;Jing, Li;Didier, Tharreau;Pei, Liu;Dayun, Tao;Qinzhong, Yang
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.679-684
    • /
    • 2022
  • Rice blast is one of the most destructive diseases of rice worldwide, and the causative agent is the filamentous ascomycete Magnaporthe oryzae. With the successful cloning of more and more avirulence genes from M. oryzae, the direct extraction of M. oryzae genomic DNA from infected rice tissue would be useful alternative for rapid monitoring of changes of avirulence genes without isolation and cultivation of the pathogen. In this study, a fast, low-cost and reliable method for DNA preparation of M. oryzae from a small piece of infected single rice leaf or neck lesion was established. This single step method only required 10 min for DNA preparation and conventional chemical reagents commonly found in the laboratory. The AvrPik and AvrPi9 genes were successfully amplified with the prepared DNA. The expected DNA fragments from 570 bp to 1,139 bp could be amplified even three months after DNA preparation. This method was also suitable for DNA preparation from M. oryzae strains stored on the filter paper. All together these results indicate that the DNA preparation method established in this study is reliable, and could meet the basic needs for polymerase chain reaction-based analysis of M. oryzae.