• Title/Summary/Keyword: plant factory system

Search Result 209, Processing Time 0.021 seconds

An Experimental Study on Plant Factory System Applied Photovoltaic System and LED Lighting (태양전지와 LED 조명을 이용한 가정용식물공장 시스템 실증시험)

  • Yang, Jun-Woo;Chung, Dong-Yeol;Kim, Jeong-Yeol;Peck, Jong-Hyeon
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.37-40
    • /
    • 2013
  • Plant factory industry as a new agriculture is in the spotlight. In this paper, we experimented plant factory applied photovoltaic system and LED lighting. For growing the plant, red, blue and white LED were placed into 1:4:3. Electric power generated by the photovoltaic system was supplied on DC power supply instead of AC. The designed and experimented power generation amount per day of photovoltaic system were 2,860 Wh and 2,272 Wh respectively. Plant has not been grown at the dead space of LED lighting so it is required to array LED lighting.

  • PDF

Actual State and Practical Use of a Factory-like Plant Production System in Japan

  • Tanaka, Isao
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.63-73
    • /
    • 1996
  • The importance of plant factory which blend agriculture and manufacture has been discussed widely. This company has researched hydroponics technique for cultivation which has been mainly developed in the sites of Okinawa and Hyougo Prefecture. In 1987, we stopped the previous research there, and started a new one far plant factory at the Agricultural Research Center of Chiba Prefecture. In 1989, we built four experimental plant factories (120㎡) at Chiba Oil Factory Refinery in Ichihara-city, developing techniques of cultivation, equipment production and environmental control for cultivation system of tomato, strawberry and leaf vegetables. (omitted)

  • PDF

The measured field survey for the improvement of the working environment of workers in the plant factory (식물공장 근로자의 작업 환경개선을 위한 현장실측 연구)

  • Kwo, Hyuk-Min;Jeong, Seok-Hwan;Kang, Joo-Won;Yang, Jeong-Hoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.43-52
    • /
    • 2014
  • A plant factory system is getting the spotlight as alternatives to cope with the weather anomaly and food crisis because of the global warming. A study on 'Plant Processing Factory System' has been proceeded to develope 'low-carbon green growth' since our government selected it as the green technologies in 2010. The plant factory has played a major role in growth industries connected to many other fields like low-carbon as well as lighting and automated system. This study is aimed to solve the problems on low productivity and health problem of plant workers caused by highly concentrated carbon dioxide and low temperature in each process in the plant factory. It is aimed to research data to understand the actual conditions of plant workers and improve the thermal environment.

Trend and direction for plant factory system (식물공장 시스템의 동향과 발전방향)

  • Kim, Jae-Whune
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.442-455
    • /
    • 2010
  • Plant factory is the fruit of the most advanced modern agricultural technology. This is a crop-producing technology that controls systematically sowing, cultivating, and harvesting crops within an indoor factory. Growing crops in a factory has advantages over traditional farming because it produces safer crops all year around due to clean environment and it is easier to hire workers at the factory. Developed countries has invested actively in this field for several decades because its economical and industrial impact are predicted to be enormous. Recently, Korea also begins to investigate this field actively to develop a system that may be competitive at global market, using technologies and human resources that Korea already has. The plant factory technology is currently less competitive than traditional farming because it requires a large initial investment and management cost and lacks cultivation technologies for various crops. However, I believe in solving these problems if plant biotechnologists participate in developing the plant factory system. If this technology is developed well in Korea, then it will play a great role in solving food and environmental issues.

Development of Automatic Lettuce Harvesting System for Plant Factory (식물 공장용 자동 상추 수확 시스템 개발)

  • 조성인;류관희;신동준;장성주
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.629-634
    • /
    • 1998
  • Factory-style plant production system aims to produce the standardized horticultural products with high quality and cleanness. In Korea, researches for year-round leaf vegetables production system are in progress and the most of them are focused on environment control. Automating technologies for harvesting, transporting and grading need to be developed. A lettuce harvesting system applicable to the plant factory was studied. It was composed of an articulated robot with a cutter and a gripper, lettuce feeding conveyor and air blower. Success rate of the developed system was 94.7 %. The system carried out harvesting a lettuce smoothly and the harvesting time was about 6 seconds per lettuce. The results showed a feasibility of robotic lettuce harvesting.

  • PDF

MICROPRECISION AGRICULTURE

  • Murase, Haruhiko
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.607-612
    • /
    • 2000
  • Microprecision agriculture for a fully controlled plant factory is proposed in this paper. Microprecision agriculture can be attained by using plant factories to realize profitable alternative agriculture. A closed, fully controlled, plant-growing factory is far better in terms of minimizing all sorts of waste. The limit and optimum design concept has to be applied to establish an economically feasible, fully controlled, plant-growing factory. To achieve this objective, microprecision technologies have to be developed. Microprecision technologies should be involved in sensing, modeling, controlling, and collecting information for the mechatronics for plant production. Basic technologies for microprecision are already available; they are SPA (speaking plant approach to environmental control), AI (artificial intelligence: expert systems, neural networks, genetic algorithms, photosynthetic algorithms etc.), bioinstrumentation, non-invasive measurement, biomechatronics, and biorobotics. A microprecision irrigation system for plug production is an example of a microprecision technology that has actually been implemented in a plug seedling production factory.

  • PDF

Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory (자연광 기반 적층형 식물공장의 열환경에 대한 수치해석 연구)

  • Park, Dong Yoon;Jang, Seong-Teak;Chang, Seong-Ju
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • Recent researches on plant factory system deal with the convergence of lighting technology, agricultural technology inclusive to the high-tech industries worldwide in order to respond to the decreasing crop harvest due to global warming and abnormal weather phenomena. However, the fundamental performance standard is not currently being introduced in the case of plants factory and its commercialization is not activated because of high initial investment and operating cost. Large portion of the initial investment and operating cost of a plant factory is ascribed to artificial light sources and thermal control facilities, therefore, innovation should be provided in order to improve the economics of the plant factory. As an alternative, new plant factory could harness solar thermal and geothermal systems for heating, cooling and ventilation. In this study, a natural light dependent multi-layer plant factory's thermal environment was analyzed with two-dimensional numerical methods to elicit efficient operation conditions for optimized internal physical environment. Depending on the supply air temperature and airflow rate introduced in the facility, the temperature changes around the crops was interpreted. Since the air supplied into the plant factory does not stay long enough, the ambient temperature predicted around the plating trays was not significantly different from that of the supplied air. However, the changes of airflow rate and air flow pattern could cause difference to the temperature around the planting trays. Increasing the amount of time of air staying around the planting trays could improve energy performance in case the thermal environment of a natural light based multi-layer plant factory is considered.

An Analysis of the Professional's Cognition Regarding the Plant Factory Feasibility (식물공장 사업타당성에 관한 전문가 인식 연구)

  • Lee, Ji-Eun;Cha, WoonCheol
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.89-97
    • /
    • 2015
  • Plant factory was started in Europe in the 1960. Thanks to the development of seeds science, nutrient study, environment control technology and automated systems, it has developed into the form of full artificial light system. In recent years, productivity of plant factory has increased with the convergence of ICT. An interest in plant factory has increased with several outstanding achievements. However, the plant factory industry is still stuck at an introductory stage and government investment has been reduced. In order to verify the feasibility of the plant factory, we conducted a survey targeting experts in politics, R&D and business field. We analyze the feasibility of investment in plant factory and strategies to enhance the competitiveness of plant factory.

A Study on Remote Cultivation Consignment System for Hobby using LED Plant Factory (LED 식물공장을 이용한 취미용 원격 식물재배 위탁 시스템에 대한 연구)

  • Cho, Myeon-gyun
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • In this paper, we propose a system that can provide a environment for plant cultivation in connection with LED plant factories and enable users to participate in plant cultivation remotely to engage in personal hobbies. The proposed system can monitor the growth conditions of plants through various sensors and remotely adjust the cultivation environment required for plant growth through the Arduino system, so that users can feel the satisfaction of plant cultivation and harvesting as a hobby. On the other hand, we suggest a mutual benefit structure for plant factory and users by securing a certain amount of income source to factory, by paying the idle space to the individual online. This paper demonstrates the feasibility of the proposed system by making the prototype of the remote plant cultivation consignment system using the Arduino and Android application(App.), and contributes to popularize the LED plant factories and expand the business area in future.

A Design of IT-Convergence Plant Factory System Using the Renewable Energy (신재생에너지를 활용한 IT-융합 식물공장 시스템 설계)

  • Lim, Gye-Jae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.769-779
    • /
    • 2015
  • In this paper, the ideal standard design and construction of plant factory systems with the Green IT technologies is proposed. For feasibility and problem analysis, a container-type plant factory which was integrated with hardware and software of elemental technologies was operated as a test bed. This operation testing and research will be the foundation of the future construction and operation of large plant factories.