International Journal of Computer Science & Network Security
/
v.21
no.9
/
pp.51-62
/
2021
Plant disease is one of the issues that can create losses in the production and economy of the agricultural sector. Early detection of this disease for finding solutions and treatments is still a challenge in the sustainable agriculture field. Currently, image processing techniques and machine learning methods have been applied to detect plant diseases successfully. However, the effectiveness of these methods still needs to be improved, especially in multiclass plant diseases classification. In this paper, a convolutional neural network with a batch normalization-based deep learning approach for classifying plant diseases is used to develop an automatic diagnostic assistance system for leaf diseases. The significance of using deep learning technology is to make the system be end-to-end, automatic, accurate, less expensive, and more convenient to detect plant diseases from their leaves. For evaluating the proposed model, an experiment is conducted on a public dataset contains 20654 images with 15 plant diseases. The experimental validation results on 20% of the dataset showed that the model is able to classify the 15 plant diseases labels with 96.4% testing accuracy and 0.168 testing loss. These results confirmed the applicability and effectiveness of the proposed model for the plant disease detection task.
Bacillus spp., as a type of plant growth-promoting rhizobacteria (PGPR), were studied with regards promoting plant growth and inducing plant systemic resistance. The results of greenhouse experiments with tobacco plants demonstrated that treatment with the Bacillus spp. significantly enhanced the plant height and fresh weight, while clearly lowering the disease severity rating of the tobacco mosaic virus (TMV) at 28 days post-inoculation (dpi). The TMV accumulation in the young non-inoculated leaves was remarkably lower for all the plants treated with the Bacillus spp. An RT-PCR analysis of the signaling regulatory genes Coil and NPR1, and defense genes PR-1a and PR-1b, in the tobacco treated with the Bacillus spp. revealed an association with enhancing the systemic resistance of tobacco to TMV. A further analysis of two expansin genes that regulate plant cell growth, NtEXP2 and NtEXP6, also verified a concomitant growth promotion in the roots and leaves of the tobacco responding to the Bacillus spp.
Here, we reported a novel secreted protein elicitor PeBL2 from Brevibacillus laterosporus A60, which can induce hypersensitive response in tobacco (Nicotiana benthamiana). The ion-exchange chromatography, high-performance liquid chromatography (HPLC) and mass spectrometry were performed for identification of protein elicitor. The 471 bp PeBL2 gene produces a 17.22 kDa protein with 156 amino acids containing an 84-residue signal peptide. Consistent with endogenous protein, the recombinant protein expressed in Escherichia coli induced the typical hypersensitive response (HR) and necrosis in tobacco leaves. Additionally, PeBL2 also triggered early defensive response of generation of reactive oxygen species ($H_2O_2$ and $O_2{^-}$) and systemic resistance against of B. cinerea. Our findings shed new light on a novel strategy for biocontrol using B. laterosporus A60.
A computer-based diagnosing system for diseases of grasses, ornamental plant and fruit trees was developed using a 16 bit personal computer (Model Acer 900) and BASIC was used as a programing language. the developed advisory system was named as Korean Plant Disease Advisory System (KOPDAS). The diagraming system files were composed of a system operation file and several database files. The knowledge-base files are composed of text files, code files and implement program files. The knowledge-base of text files are composed of 79 files of grasses diseases, 122 files of ornamental plant diseases and 67 files of fruit tree diseases. The information of each text file include disease names, causal agents, diseased parts, symptoms, morphological characteristics of causal organisms and control methods for the diagnosing of crop diseases.
Plant disease is an important factor affecting crop yield. With various types and complex conditions, plant diseases cause serious economic losses, as well as modern agriculture constraints. Hence, rapid, accurate, and early identification of crop diseases is of great significance. Recent developments in deep learning, especially convolutional neural network (CNN), have shown impressive performance in plant disease classification. However, most of the existing datasets for plant disease classification are a single background environment rather than a real field environment. In addition, the classification can only obtain the category of a single disease and fail to obtain the location of multiple different diseases, which limits the practical application. Therefore, the object detection method based on CNN can overcome these shortcomings and has broad application prospects. In this study, an annotated apple leaf disease dataset in a real field environment was first constructed to compensate for the lack of existing datasets. Moreover, the Faster R-CNN and YOLOv3 architectures were trained to detect apple leaf diseases in our dataset. Finally, comparative experiments were conducted and a variety of evaluation indicators were analyzed. The experimental results demonstrate that deep learning algorithms represented by YOLOv3 and Faster R-CNN are feasible for plant disease detection and have their own strong points and weaknesses.
$HpaG_{Xooc}$, from rice pathogenic bacterium Xanthomonas oryzae pv. oryzicola, is a member of the harpin group of proteins, eliciting hypersensitive cell death in non-host plants, inducing disease and insect resistance in plants, and enhancing plant growth. To express and secret the $HpaG_{Xooc}$ protein in Bacillus subtilis, we constructed a recombinant expression vector pM43HF with stronger promoter P43 and signal peptide element nprB. The SDS-PAGE and Western blot analysis demonstrated the expression of the protein $HpaG_{Xooc}$ in B. subtilis. The ELISA analysis determined the optimum condition for $HpaG_{Xooc}$ expression in B. subtilis WBHF. The biological function analysis indicated that the protein $HpaG_{Xooc}$ from B. subtilis WBHF elicits hypersensitive response(HR) and enhances the growth of tobacco. The results of RT-PCR analysis revealed that $HpaG_{Xooc}$ induces expression of the pathogenesis-related genes PR-1a and PR-1b in plant defense response.
Proceedings of the Korean Society of Plant Pathology Conference
/
2003.10a
/
pp.25-27
/
2003
Since 1993, a total of 50 problematic plant diseases unrecorded in Korea were surveyed in Gyeongnam province. Totally 34 new host plants to corresponding pathogens investigated in this study were 5 fruit trees, 9 vegetables, 12 ornamental plants, 3 industrial crops, and 5 medicinal plants. Among the newly recorded fruit tree diseases, fruit rot of pomegranate caused by Coniella granati and Rhizopus soft rot of peach caused by Rhizopus nigricans damaged severely showing 65.5% and 82.4% infection rate. Among the vegetable diseases, corynespora leaf spot of pepper caused by Corynespora cassiicola and the crown gall of pepper caused by Agrobacterium tumefaciens, powdery mildew of tomato caused by Oidiopsis taurica were the most severe revealing 47.6%, 84.7%, and 54.5% infection rate in heavily infected fields, respectively. In ornamental plants, collar rot of lily caused by Sclerotium rolfsii, gray mold of primula caused by Botrytis cinerea, soot leaf blight of dendrobium caused by Pseudocercospora dendrobium, sclerotinia rot of obedient plant caused by Sclerotinia sclerotiorum showed 32.7 to 64.8% disease incidence. On three industrial plants such as sword bean, broad bean, and cowpea, eight diseases were firstly found in this study. Among the diseases occurring on broad bean, rust caused by Uromyces viciae-fabae and red spot caused by Botrytis fabae were the major limiting factor for the cultivation of the plant showing over 64% infection rate in fields. In medicinal plants, anthracnose of safflower caused by Collectotrichum acutatum was considered the most severe disease on the plant and followed by collar rot caused by Sclerotium rolfsii.(중략)
Gaeumannomyces graminis var. tritici is a soil borne pathogenic fungus associated with wheat roots. The accurate quantification of gene expression during the process of infection might be helpful to understand the pathogenic molecular mechanism. However, this method requires suitable reference genes for transcript normalization. In this study, nine candidate reference genes were chosen, and the specificity of the primers were investigated by melting curves of PCR products. The expression stability of these nine candidates was determined with three programs-geNorm, Norm Finder, and Best Keeper. $TUB{\beta}$ was identified as the most stable reference gene. Furthermore, the exopolygalacturonase gene (ExoPG) was selected to verify the reliability of $TUB{\beta}$ expression. The expression profile of ExoPG assessed using $TUB{\beta}$ agreed with the results of digital gene expression analysis by RNA-Seq. This study is the first systematic exploration of the optimal reference genes in the infection process of Gaeumannomyces graminis var. tritici.
Proceedings of the Korean Society of Plant Pathology Conference
/
1994.06a
/
pp.1-10
/
1994
Biological control of plant disease has been considered a potential control strategy in integrated pest management in recent years. This paper reviewed the progress of research on the biological control of plant diseases in Korea during the last two decades and adopts some future prospects. The crop diseases included, red pepper, Phytophthora blight, ginseng root rots cucumber wilt, sesame damping-off, strawberry wilt and tobacco bacterial wilt and mosaic. Biological control of plant diseases requires a multi-disciplinary approach involving input from plant pathologists, ecologists, mycologists and molecular biologists. The author proposed to organize a group“Committee for Biological Control”including researchers, industries, growers and administrators.
Jung, Ji-Youl;Lee, Kyunghyun;Choi, Eun-Jin;Lee, Hyunkyoung;Moon, Bo Youn;Kim, Ha-Young;So, ByungJae
Korean Journal of Veterinary Service
/
v.41
no.2
/
pp.119-123
/
2018
There has recently been a growing demand for pathodiagnosis to determine the cause of death in cats. We retrospectively analyzed the diseases diagnosed in cats that were submitted to Animal and Plant Quarantine Agency (APQA) in 2015~2017. Overall diagnostic rate in feline samples was 85.2% (n=104/122). Among diagnosed cases, infectious diseases (n=63) were responsible for most of the feline diseases and feline panleukopenia (n=29) were most prevalent. Highly pathogenic avian influenza (HPAI) H5N6 was first diagnosed in cats at the end of December 2016 in the HPAI outbreaks. One case in 2015, 4 cases in 2016, and 14 cases in 2017 were associated with animal abuse, such as trauma and poisoning. These results suggest that suitable vaccination of feline infectious diseases, monitoring of the susceptible domestic animals during HPAI outbreaks, and interest on veterinary forensics to prevent and determine animal abuse are needed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.