• Title/Summary/Keyword: plant disease classification

Search Result 55, Processing Time 0.014 seconds

An Analysis of Plant Diseases Identification Based on Deep Learning Methods

  • Xulu Gong;Shujuan Zhang
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.319-334
    • /
    • 2023
  • Plant disease is an important factor affecting crop yield. With various types and complex conditions, plant diseases cause serious economic losses, as well as modern agriculture constraints. Hence, rapid, accurate, and early identification of crop diseases is of great significance. Recent developments in deep learning, especially convolutional neural network (CNN), have shown impressive performance in plant disease classification. However, most of the existing datasets for plant disease classification are a single background environment rather than a real field environment. In addition, the classification can only obtain the category of a single disease and fail to obtain the location of multiple different diseases, which limits the practical application. Therefore, the object detection method based on CNN can overcome these shortcomings and has broad application prospects. In this study, an annotated apple leaf disease dataset in a real field environment was first constructed to compensate for the lack of existing datasets. Moreover, the Faster R-CNN and YOLOv3 architectures were trained to detect apple leaf diseases in our dataset. Finally, comparative experiments were conducted and a variety of evaluation indicators were analyzed. The experimental results demonstrate that deep learning algorithms represented by YOLOv3 and Faster R-CNN are feasible for plant disease detection and have their own strong points and weaknesses.

Tomato Crop Disease Classification Using an Ensemble Approach Based on a Deep Neural Network (심층 신경망 기반의 앙상블 방식을 이용한 토마토 작물의 질병 식별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1250-1257
    • /
    • 2020
  • The early detection of diseases is important in agriculture because diseases are major threats of reducing crop yield for farmers. The shape and color of plant leaf are changed differently according to the disease. So we can detect and estimate the disease by inspecting the visual feature in leaf. This study presents a vision-based leaf classification method for detecting the diseases of tomato crop. ResNet-50 model was used to extract the visual feature in leaf and classify the disease of tomato crop, since the model showed the higher accuracy than the other ResNet models with different depths. We propose a new ensemble approach using several DCNN classifiers that have the same structure but have been trained at different ranges in the DCNN layers. Experimental result achieved accuracy of 97.19% for PlantVillage dataset. It validates that the proposed method effectively classify the disease of tomato crop.

Deep Learning-based system for plant disease detection and classification (딥러닝 기반 작물 질병 탐지 및 분류 시스템)

  • YuJin Ko;HyunJun Lee;HeeJa Jeong;Li Yu;NamHo Kim
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.9-17
    • /
    • 2023
  • Plant diseases and pests affect the growth of various plants, so it is very important to identify pests at an early stage. Although many machine learning (ML) models have already been used for the inspection and classification of plant pests, advances in deep learning (DL), a subset of machine learning, have led to many advances in this field of research. In this study, disease and pest inspection of abnormal crops and maturity classification were performed for normal crops using YOLOX detector and MobileNet classifier. Through this method, various plant pest features can be effectively extracted. For the experiment, image datasets of various resolutions related to strawberries, peppers, and tomatoes were prepared and used for plant pest classification. According to the experimental results, it was confirmed that the average test accuracy was 84% and the maturity classification accuracy was 83.91% in images with complex background conditions. This model was able to effectively detect 6 diseases of 3 plants and classify the maturity of each plant in natural conditions.

Plants Disease Phenotyping using Quinary Patterns as Texture Descriptor

  • Ahmad, Wakeel;Shah, S.M. Adnan;Irtaza, Aun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3312-3327
    • /
    • 2020
  • Plant diseases are a significant yield and quality constraint for farmers around the world due to their severe impact on agricultural productivity. Such losses can have a substantial impact on the economy which causes a reduction in farmer's income and higher prices for consumers. Further, it may also result in a severe shortage of food ensuing violent hunger and starvation, especially, in less-developed countries where access to disease prevention methods is limited. This research presents an investigation of Directional Local Quinary Patterns (DLQP) as a feature descriptor for plants leaf disease detection and Support Vector Machine (SVM) as a classifier. The DLQP as a feature descriptor is specifically the first time being used for disease detection in horticulture. DLQP provides directional edge information attending the reference pixel with its neighboring pixel value by involving computation of their grey-level difference based on quinary value (-2, -1, 0, 1, 2) in 0°, 45°, 90°, and 135° directions of selected window of plant leaf image. To assess the robustness of DLQP as a texture descriptor we used a research-oriented Plant Village dataset of Tomato plant (3,900 leaf images) comprising of 6 diseased classes, Potato plant (1,526 leaf images) and Apple plant (2,600 leaf images) comprising of 3 diseased classes. The accuracies of 95.6%, 96.2% and 97.8% for the above-mentioned crops, respectively, were achieved which are higher in comparison with classification on the same dataset using other standard feature descriptors like Local Binary Pattern (LBP) and Local Ternary Patterns (LTP). Further, the effectiveness of the proposed method is proven by comparing it with existing algorithms for plant disease phenotyping.

A Deep Convolutional Neural Network with Batch Normalization Approach for Plant Disease Detection

  • Albogamy, Fahad R.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.51-62
    • /
    • 2021
  • Plant disease is one of the issues that can create losses in the production and economy of the agricultural sector. Early detection of this disease for finding solutions and treatments is still a challenge in the sustainable agriculture field. Currently, image processing techniques and machine learning methods have been applied to detect plant diseases successfully. However, the effectiveness of these methods still needs to be improved, especially in multiclass plant diseases classification. In this paper, a convolutional neural network with a batch normalization-based deep learning approach for classifying plant diseases is used to develop an automatic diagnostic assistance system for leaf diseases. The significance of using deep learning technology is to make the system be end-to-end, automatic, accurate, less expensive, and more convenient to detect plant diseases from their leaves. For evaluating the proposed model, an experiment is conducted on a public dataset contains 20654 images with 15 plant diseases. The experimental validation results on 20% of the dataset showed that the model is able to classify the 15 plant diseases labels with 96.4% testing accuracy and 0.168 testing loss. These results confirmed the applicability and effectiveness of the proposed model for the plant disease detection task.

Superpixel-based Apple Leaf Disease Classification using Convolutional Neural Network (합성곱 신경망을 이용하는 수퍼픽셀 기반 사과잎 병충해의 분류)

  • Kim, Manbae;Choi, Changyeol
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.208-217
    • /
    • 2020
  • The classification of plant diseases by images captured by a camera sensor has been studied over past decades. A method that has gained much interest is to use image segmentation, from which statistical features are derived and analyzed by machine learning. Recently, deep learning has been adopted in this area. However, image segmentation is still a difficult task to achieve stable performance due to a variety of environmental variations. The end-to-end learning in neural network has a demerit that train images may be different from real images acquired in outdoor fields. To solve these problems, we propose superpixel-based disease classification method using end-to-end CNN (convolutional neural network) learning. Based on experiments performed on PlantVillage apple images, the classification accuracy is 98.29% and 92.43% for full-image and superpixel. As well, the multivariate F1-score is (0.98, 0.93). Therefore we validate that the method of using superpixel is comparable to that of full-image.

Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato

  • Kang, Won-Hee;Yeom, Seon-In
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2018
  • Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.

Novel Category Discovery in Plant Species and Disease Identification through Knowledge Distillation

  • Jiuqing Dong;Alvaro Fuentes;Mun Haeng Lee;Taehyun Kim;Sook Yoon;Dong Sun Park
    • Smart Media Journal
    • /
    • v.13 no.7
    • /
    • pp.36-44
    • /
    • 2024
  • Identifying plant species and diseases is crucial for maintaining biodiversity and achieving optimal crop yields, making it a topic of significant practical importance. Recent studies have extended plant disease recognition from traditional closed-set scenarios to open-set environments, where the goal is to reject samples that do not belong to known categories. However, in open-world tasks, it is essential not only to define unknown samples as "unknown" but also to classify them further. This task assumes that images and labels of known categories are available and that samples of unknown categories can be accessed. The model classifies unknown samples by learning the prior knowledge of known categories. To the best of our knowledge, there is no existing research on this topic in plant-related recognition tasks. To address this gap, this paper utilizes knowledge distillation to model the category space relationships between known and unknown categories. Specifically, we identify similarities between different species or diseases. By leveraging a fine-tuned model on known categories, we generate pseudo-labels for unknown categories. Additionally, we enhance the baseline method's performance by using a larger pre-trained model, dino-v2. We evaluate the effectiveness of our method on the large plant specimen dataset Herbarium 19 and the disease dataset Plant Village. Notably, our method outperforms the baseline by 1% to 20% in terms of accuracy for novel category classification. We believe this study will contribute to the community.