• Title/Summary/Keyword: plant construction

Search Result 2,247, Processing Time 0.033 seconds

Seismic and Structure Analysis of a Temporary Rack Construction in a Nuclear Power Plant (원자력 발전소 공사용 임시받침대의 내진 및 구조해석)

  • Kim, Heung-Tae;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1265-1271
    • /
    • 2011
  • In this study, the safety of a rack structure was evaluated through seismic analysis considering fluid-structure interactions using a finite-element model. The rack structure was immersed under water, so it was influenced by the water. The fluid-structure interaction can be specified in terms of the hydrodynamic effect, which is defined as the added mass per unit length. Modal analysis and seismic analysis using the Floor Response Spectrum (FRS) were carried out under Operating Basis Earthquake (OBE) and Safe Shutdown Earthquake (SSE) conditions. The analytical maximum displacements of the rack structure were 0.29 and 0.36 mm under OBE and SSE conditions, respectively. The maximum stresses were 17.9 MPa under OBE conditions and 19.6 MPa under SSE conditions; these results corresponded to 23 % and 14% of the yield strength of the applied material, respectively.

Performance Characteristics of a Turbo Blower Having the Various Shapes of a Volute Casing (볼류트 케이싱 형상에 따른 터보블로어 성능특성 고찰)

  • Jang, Choon-Man;Yang, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.843-850
    • /
    • 2010
  • This In this paper, we describe the performance characteristics of a turbo blower as a function of the shape of the volute casing: expansion diameter and width of the volute casing. The turbo blower considered in the present study is mainly used in a refuse collection system. The flow characteristics inside the turbo blower were analyzed by a three-dimensional Navier-Stokes solver and compared with experimental results. The distributions of pressure and efficiency obtained by numerical simulation were in good agreement with those determined experimentally. Throughout the numerical simulation of the turbo blower, the blower performance was enhanced by decreasing the local losses in the blade passage and the outlet flow. The efficiency and pressure for the design flow condition were enhanced by about 3% and 2%, respectively, compared to the efficiency and pressure of the reference blower. Detailed flow analysis was performed using the results of the numerical simulation

Measurements of Load Current of XLPE Cables Installed at the Load Terminal of Turbine Generator in Operation at Thermoelectric Power Station (화력 발전소의 터빈 발전기 부하단에 설치된 XLPE 케이블의 부하전류 측정)

  • Um, Kee-Hong;Kim, Bo-Kyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.207-212
    • /
    • 2017
  • The cables installed to deliver high electric power from a generator at a thermoelectric power station are XLPE (or CV) cables. Depending on the installation and usage conditions, the cables in operation start deteriorating from the time of initial operation. Some cables can cause accidents due to faulty construction or other environmental factors. In order to prevent cable accidents, regular auditing of power cables is required. We have invented a measuring device for systematic surveillance and prevention of accidents, and installed the device at Korean Western Power Co. Ltd. which measures load currents through the cables. In this paper, we present the load current measured using our device, analyze the load characteristics by measures current, compare the ampacity defined by IEC standard, and present a basic data to obtain the temperature of cable conductors.

The Study of Optimized Combustion Tuning Method for Fossil Power Plant (발전용 보일러의 최적연소조정기법에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Prediction of Cryptosporidium parvum Inactivation in Advanced Ozone Drinking Water Treatment with Lab Scale Experiments (실험실 규모 크립토스포리디움의 불활성화 실험을 통한 오존 고도정수처리 정수장에서 소독 효과 예측)

  • Cho, Min;Chung, Hyenmi;Kim, Reeho;Shon, Jinsik;Park, Sangjung;Yoon, Jeyong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • With the appearance of pathogenic microorganisms, which were resistant to free chlorine, the significant attention to the necessity of powerful alternative disinfection methods such as ozone, chlorine dioxide, LTV irradiation to inactivating pathogens has been increased in water treatment. Among these alternative disinfection methods, ozone is well known as strong biocidal method and the usage of ozone is also increasing in Korea. However, in Korea, there has been no report on the quantitative study of Cryptosporidium parvum with ozone and its evaluation in advanced drinking water treatments. This study reports on the methodology for predicting the ozone inactivation of Cryptosporidium parvum by ozone disinfection in advanced drinking water treatment. The method is based on the fact that a specific inactivation level of microorganisms is achieved at a unique value of ozone exposures, independent of ozone dose and type of water, and quantitatively described by a delayed Chick-Watson model. The required values ${\bar{C}}T$ for 2 log inactivation of Cryptosporidium parvum was $6.0mg/L{\cdot}min$ and $15.5mg/L{\cdot}min$ at $20^{\circ}C$ and $5^{\circ}C$, respectively. From this obtained Cryptosporidium parvum inactivation curves and calculated ${\bar{C}}T$ values of advanced drinking water treatment water in Korea with FIA (Flow injection alaysis), we can predict that water treatment plant can achieve a 1.1~1.8 log inactivation and 0~0.4 log inactivation at $20^{\circ}C$ and $5^{\circ}C$, respectively. This methodology will be useful for drinking water treatment plants which intend to evaluate the disinfection efficiencies of their ozonation process without full scale test and direct experiments with Cryptosporidium parvum.

A Study on the Municipal Wastewater Treatment Using Biofilm Process (생물막공법을 이용한 도시하수처리에 관한 연구)

  • Kwak, Byung Chan;Tak, Seong Jae;Kim, Nam Cheon;HWang, Yong Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.62-75
    • /
    • 2000
  • Most of biological treatment to remove contaminants in municipal wastewater have been conducted by activated sludge process. But, the process have several probIems such as enormous site needed for construction of treatment facilities, unstable treatment due to limited ability to control load fluctuation, frequent sludge bulking and appearance of lots of surplus sludge. In this study, the experiments were performed through submerging biofilm of PEPP media in existing aeration tank with raw water from municipal wastewater treatment plant and then submerging PVDC and PEPP media, different from shape and chemical peculiarity in anoxic reactor. Throughout the experience, nutrient removal efficiency according to HRT, nitrogen phosphorous removal efficiency, behavior of nitrogen and dewatering efficiency have been compared and analysed with those of activated sludge process. As the results, BOD removal efficiency according to BOD volumetric load and F/M ratio was not found any differency in two processes, but was decreased below 90% as going along the condition of high load in activated sludge process. Kinetic coefficient was $K_{max}=1.162day^{-1}$, $K_s=53.77mg/L$, $Y=0.166mgVSS/mgBOD_{rem}$. and $K_d=0.019day^{-1}$. It was found that the removal efficiency, even though in aerobic condition, in biofilm process equipped anoxic reactor was higher than the one in activated sludge process within the range of 70~80%, and became better as HRT increased. Phosphorous removal efficiency was not found any differency in two processes. In biofilm process, treament efficiency even in conditions of high load was not decreased, because the biomass concentration could be maintained in high condition compared with activated sludge process. As HRT increased, suspended and attached biomass was increased and the other hand, F/M ratio was decreased as biomass' increasing. Biomass thickness was increased. from $10.43{\mu}m$ to $10.55{\mu}m$ as HRT increased and density of biomass within $40.79{\sim}41.16mg/cm^2$. The results also present that the dewatering efficiency of sludge generated in biofilm process was higher than in activated sludge process, and became better as HRT increased.

  • PDF

Detecting response patterns of zooplankton to environmental parameters in shallow freshwater wetlands: discovery of the role of macrophytes as microhabitat for epiphytic zooplankton

  • Choi, Jong-Yun;Kim, Seong-Ki;Jeng, Kwang-Seuk;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Freshwater macrophytes improve the structural heterogeneity of microhabitats in water, often providing an important habitat for zooplankton. Some studies have focused on the overall influence of macrophytes on zooplankton, but the effects of macrophyte in relation to different habitat characteristics of zooplankton (e.g., epiphytic and pelagic) have not been intensively studied. We hypothesized that different habitat structures (i.e., macrophyte habitat) would strongly affect zooplankton distribution. We investigated zooplankton density and diversity, macrophyte characteristics (dry weight and species number), and environmental parameters in 40 shallow wetlands in South Korea. Patterns in the data were analyzed using a self-organizing map (SOM), which extracts information through competitive and adaptive properties. A total of 20 variables (11 environmental parameters and 9 zooplankton groups) were patterned onto the SOM. Based on a U-matrix, 3 clusters were identified from the model. Zooplankton assemblages were positively related to macrophyte characteristics (i.e., dry weight and species number). In particular, epiphytic species (i.e., epiphytic rotifers and cladocerans) exhibited a clear relationship with macrophyte characteristics, while large biomass and greater numbers of macrophyte species supported high zooplankton assemblages. Consequently, habitat heterogeneity in the macrophyte bed was recognized as an important factor to determine zooplankton distribution, particularly in epiphytic species. The results indicate that macrophytes are critical for heterogeneity in lentic freshwater ecosystems, and the inclusion of diverse plant species in wetland construction or restoration schemes is expected to generate ecologically healthy food webs.

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Association between high sensitivity C-reactive protein and dietary intake in Vietnamese young women

  • Ko, Ahra;Kim, Hyesook;Han, Chan-Jung;Kim, Ji-Myung;Chung, Hye-Won;Chang, Namsoo
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.445-452
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: High sensitivity C-reactive protein (hsCRP) is a strong independent predictor of future cardiovascular disease (CVD) risk. We evaluated the relationship between hsCRP and dietary intake in apparently healthy young women living in southern Vietnam. SUBJECTS/METHODS: Serum hsCRP was measured and dietary intake data were obtained using the 1-day 24-hour recall method in women (n = 956; mean age, $25.0{\pm}5.7$ years) who participated in the International Collaboration Study for the Construction of Asian Cohort of the Korean Genome and Epidemiology Study (KoGES) in 2011. RESULTS: Women in the high risk group (> 3 mg/L) consumed fewer fruits and vegetables, total plant food, potassium, and folate than those in the low risk group (< 1 mg/L). A multiple regression analysis after adjusting for covariates revealed a significant negative association between hsCRP and fruit and vegetable consumption. A logistic regression analysis showed that the odds ratio (OR) of having a high hsCRP level in women with the highest quartiles of consumption of fruits and vegetables [OR, 0.391; 95% confidence interval (CI), 0.190-0.807], potassium [OR, 0.425; 95% CI, 0.192-0.939] and folate [OR, 0.490; 95% CI, 0.249-0.964] were significantly lower than those in the lowest quartiles. CONCLUSIONS: These results suggest that, in young Vietnamese women, an increased consumption of fruit and vegetables might be beneficial for serum hsCRP, a risk factor for future CVD events.