• Title/Summary/Keyword: plant cell death

Search Result 242, Processing Time 0.022 seconds

Houttuynia cordata Thunberg exhibits anti-tumorigenic activity in human gastric cancer cells

  • Hong, Se Chul;Eo, Hyun-Ji;Song, Hoon-Min;Woo, So-Hee;Kim, Mi-Kyeong;Lee, Jin-Wook;Seo, Jeong-Min;Park, Su-Bin;Eom, Jung-Hye;Koo, JinSuk;Jeong, JinBoo
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.155-160
    • /
    • 2013
  • Objectives : Gastric cancer is a leading cause of cancer-related deaths, worldwide. Houttuynia cordata Thunberg (H. cordata) has been used as a medicinal plants and it has an anti-cancer activity in human colorectal cancer and leukemic cancer. However, the potential anti-cancer activity and mechanisms of H. cordata for human gastric cancer cells have not been tested so far. Thus, this study examined the biological effects of H. cordata on the human gastric cancer cell line SNU-1 and AGS. Methods : Inhibition of cell proliferation and cell cycle by H. cordata was carried out by MTT assay and Muse cell cycle analysis and the expressions of protein associated with apoptosis and cell cycle regulation were investigated with Western blot analysis. Results : In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by H. cordata in a time and dose dependent manner, Inhibition of cell proliferation by H. cordata was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bax to Bcl-2 by H. cordata. Also, H. cordata regulated the expression of cell cycle regulatory proteins such as pRb, cyclin D1, cyclin E, CDK4, CDK2, p21 and p15. Conclusion : The antiproliferative effect of H. cordata on SNU-1 and AGS gastric cancer cells revealed in this study suggests that H. cordata has intriguing potential as a chemopreventive or chemotherapeutic agent.

Combination of Nimbolide and TNF-α-Increases Human Colon Adenocarcinoma Cell Death through JNK-mediated DR5 Up-regulation

  • Boonyarat, Chantana;Yenjai, Chavi;Reubroycharoen, Prasert;Waiwut, Pornthip
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2637-2641
    • /
    • 2016
  • Tumor necrosis factor ($TNF-{\alpha}$), an inflammatory cytokine that plays an important role in the control of cell proliferation, differentiation, and apoptosis, has previously been used in anti-cancer therapy. However, the therapeutic applications of $TNF-{\alpha}$ are largely limited due to its general toxicity and anti-apoptotic influence. To overcome this problem, the present study focused on the effect of active constituents isolated from a medicinal plant on $TNF-{\alpha}$-induced apoptosis in human colon adenocarcinoma (HT-29) cells. Nimbolide from Azadirachta indica was evaluated for cytotoxicity by methyl tetrazolium 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and phase contrast microscopy. Effects on apoptotic signaling proteins were investigated using Western blot analysis. Nimbolide showed cytotoxicity against HT-29 cells that was significantly different from the control group (p<0.01), a concentration of $10{\mu}M$ significantly inducing cell death (p<0.01). In combination with $TNF-{\alpha}$, nimbolide significantly enhanced-induced cell death. In apoptotic pathway, nimbolide activated c-Jun N-terminal kinase (JNK) phosphorylation, BH3 interacting-domain death agonist (Bid) and up-regulated the death receptor 5 (DR5) level. In the combination group, nimbolide markedly sensitized $TNF-{\alpha}$-induced JNK, Bid, caspase-3 activation and the up-regulation of DR5. Our findings overall indicate that nimbolide may enhance $TNF-{\alpha}$-mediated cellular proliferation inhibition through increasing cell apoptosis of HT-29 cells by up-reglation of DR5 expression via the JNK pathway.

Cytoprotective Effects of Sulfuretin from Rhus verniciflua through Regulating of Heme Oxygenase-1 in Human Dental Pulp Cells

  • Lee, Dong-Sung;Kim, Kyoung-Su;Ko, Wonmin;Keo, Samell;Jeong, Gil-Saeng;Oh, Hyuncheol;Kim, Youn-Chul
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • Rhus verniciflua Stokes (Anacadiaceae) is a plant that is native to East Asian countries, such as Korea, China, and Japan, and it has been found to exert various biological activities including antioxidative, anti-aggregatory, anti-inflammatory, anti-mutagenic, and apoptotic effects. Sulfuretin is one of the major flavonoid component isolated from the heartwood of R. verniciflua. Reactive oxygen species (ROS), produced via dental adhesive bleaching agents and pulpal disease, can cause oxidative stress. In the present study, we isolated sulfuretin from R. verniciflua and demonstrated that sulfuretin possesses cytoprotective effects against hydrogen peroxide ($H_2O_2$)-induced dental cell death. $H_2O_2$ is a representative ROS and causes cell death through necrosis in human dental pulp (HDP) cells. $H_2O_2$-induced cytotoxicity and production of ROS were blocked in the presence of sulfuretin, and these effects were dose dependent. Sulfuretin also increased heme oxygenase-1 (HO-1) protein expression. In addition, to determine whether sulfuretin-induced HO-1 expression mediated this cytoprotective effect, HDP cells were cotreated with sulfuretin in the absence or presence of SnPP, an inhibitor of HO activity. Sulfuretin-dependent HO-1 expression was required for suppression of $H_2O_2$-induced HDP cell death and ROS generation. These results indicate that sulfuretin-dependent HO-1 expression was required for the inhibition of $H_2O_2$-induced cell death and ROS generation. In addition, sulfuretin may be used to prevent functional dental cell death and thus may be useful as a pulpal disease agent.

From Recognition to Defense Responses in Rice Plant

  • Jwa, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.13-13
    • /
    • 2003
  • When plants are infected by plant pathogens, rapid cell responses are initiated for further inhibition from fast invasion of pathogens. Hypersensitive response (HR) of plant is well known defense response stopping pathogenesis process through rapid cell death. However, informations on the signaling pathway from reception of pathogen by host plants to appropriate resistant responses are very limited to date. Efficient perception of infection by pathogens and well-programmed signalling mechanism for appropriate responses are important for survival of plants. Plant have developed a sophisticated network(s) of defense/stress responses, among which one of the earliest signalling pathways after perception (of stimuli) is the evolutionary conserved Rop GTPase and mitogen-activated protein kinase (MAPK) cascade.(중략)

  • PDF

Spinacia oleracea Extract Protects against Chemical-Induced Neuronal Cell Death (시금치 추출물에 의한 뇌세포 사멸 보호 효과)

  • Park, Ja-Young;Heo, Jin-Chul;Woo, Sang-Uk;Shin, Heung-Mook;Kwon, Taeg-Kyu;Lee, Jin-Man;Chung, Shin-Kyo;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.425-430
    • /
    • 2007
  • To investigate the potential therapeutic value of a plant extract against amyloid ${\beta}-peptide-induced$ cell damage, we first screened extracts of 250 herbs, and finally selected a water extract of Spinacia oleracea for further study. This extractshowed the potential to inhibit the reactions of oxidants. We measured the angiotensin-converting-enzyme (ACE) inhibitory activity of the extract, and assessed the ability of the extract to protect neuronal cells from chemical-induced cell death. SH-SY5Y neuroblastoma cells were used in this assay. The extract exerted protective effects on $H_2O_2-induced$ cell death, when $H_2O_2$ was used at 100 M, 200 M, and 500 M (protection of 87%, 73%, and 58%, respectively). When 50 M of amyloid ${\beta}-peptide$ was added to the test cells, however, the extract had no protective effect on cell death. The extract inhibited ACE activity in a dose-dependent manner, and exhibited potent protection against the deleterious effects of $H_2O_2$. In sum, these results suggest that a water extract of Spinacia oleracea has the potential to afford protection against chemical-induced neuronal cell death, and the extract may be useful in the treatment of neurodegenerative diseases. The precise molecular mechanism of neuroprotection is under investigation.

Subcellular Responses in Nonhost Plant Infected with Pathogenic and Non-pathogenic Strains of Xanthomonas axonopodis pv. glycines

  • Jeong, Yong-Ho;Kim, Jung-Gun;Chang, Sung-Pae;Hwang, In-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.115-120
    • /
    • 2002
  • Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean, induces hypersensitive response (HR) in a non-host plant, hot pepper (Capsicum annuum). A wild-type strain (8ra) and its non-patho-genic mutant (8-13) of X. axonopodis pv. glycines were inoculated into the pepper leaf tissues and their subcellular responses to the bacterial infections were examined by electron microscopy. Intrastructural changes related to HR were found in the leaf tissues infected with 8ra from 8 h after inoculation, characterized by separation of plasmalemma from the cell wall, formation of small vacuoles and vesicles, formation of cell wall apposition, and cellular necrosis. No such responses were observed in the tissues infected with the mutant. In 8ra, the bacterial cells were attached to the cell walls, with the cell wall material dissolved into and appearing to encapsulate the bacterial cells. The bacterial cells later became entirely embedded in the cell wall material. On the other hand, in 8-13, the bacterial cells were usually not attached tightly to the plant cell wall, and no or poor encapsulation of the bacteria by the wall material occurred, although these were encircled by rather loose wall materials at the later stages.

In vitro Investigation of Cytotoxic and Apoptotic Effects of Cynara L. Species in Colorectal Cancer Cells

  • Simsek, Ela Nur;Uysal, Tuna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6791-6795
    • /
    • 2013
  • Apoptotic and cytotoxic activity of plant extracts obtaining from naturally growing Cynara syriaca in Turkey and cultivated C cardunculus against DLD1 colorectal cancer cells was determined. Extracts from wild and cultivated Cynara species were obtained from their vegetative parts and receptacles using hexane and applied with five different dose (0.1-1 mg/ml) as well as apigenin for MTT tests for three time periods (24, 48 and 72 hours). After cells were treated with $IC_{50}$ doses for each extract total DNA and RNA were isolated for determination of the cause of cell death. From isolated RNAs, cDNA were synthesized and amplification of p21, BCL-2 and BAX gene regions was carried out. Consequently, we found that pro-apoptotic (BAX) gene expression and a cell cycle inhibitor (p21) were induced in the presence of our artichoke extracts. In contrast, anti-apoptotic BCL-2 gene expression was reduced compared to the control group. In addition DNA fragmentation results demonstrated DLD1 cell death via apoptosis.

Apoptosis Induction in Human Leukemic Promyelocytic HL-60 and Monocytic U937 Cell Lines by Goniothalamin

  • Petsophonsakul, Ploingarm;Pompimon, Wilart;Banjerdpongchai, Ratana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2885-2889
    • /
    • 2013
  • Goniothalamin is an active compound extracted from Goniothalamus griffithii, a local plant found in northern Thailand. Goniothalamin inhibits cancer cell growth but is also toxic to normal cells. The aims of this study were to identify the cytotoxic effect of goniothalamin and the mechanism of cell death in human HL-60 and U937 cells. Cytotoxicity was determined by MTT assay and cell cycle profiles were demonstrated by staining with propidium iodide (PI) and flow cytometry. Apoptosis was confirmed by staining with annexin V-FITC/propidium iodide (PI) and flow cytometry. Reduction of mitochondrial transmembrane potential was determined by staining with dihexyloxacarbocyanine iodide and flow cytometry and expression of Smac, caspase-8 and -9 was demonstrated by Western blotting. Goniothalamin inhibited growth of HL-60 and U937 cell lines. An increase of SubG1 phase was found in their cell cycle profiles, indicating apoptosis as the mode of cell death. Apoptosis was confirmed by the flip-flop of phosphatidylserine using annexin V-FITC/PI assay in HL60 and U937 cells in a dose response manner. Furthermore, reduction of mitochondrial transmembrane potential was found in both cell types while expression of caspase-8, -9 and Smac/Diablo was increased in HL-60 cells. Taken together, our results indicate that goniothalamin-treated human leukemic cells undergo apoptosis via intrinsic and extrinsic pathways.

In situ Recovery of hCTLA4Ig from Suspension Cell Cultures of Oryza sativa (형질전환 벼 현탁세포 배양에서 hCTLA4Ig의 in situ 회수)

  • Choi, Hong-Yeol;Cheon, Su-Hwan;Kwon, Jun-Young;Yun, Boreum;Hong, Seok-Mi;Kim, Sun-Dal;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.284-290
    • /
    • 2016
  • In this research, recombinant human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) was produced by transgenic rice cells. RAmy3D promoter was used for overcome the limitation of low expression level in transgenic plant cells, and the secretion of target protein was accomplished by signal peptide. However, the RAmy3D promoter system which can be induced only by sugar starvation causes the decrease of cell viability. As a result, cell death promotes the release of protease which degrades the target proteins. The protein stability and productivity can be significantly influenced by proteolysis activity. Therefore, development of new strategies are necessary for the in situ recovery of target proteins from cell culture media. In this study, in situ recovery was performed by various strategies. Direct addition of Protein A resin with nylon bag leads to cell death by increased shear stress and decrease in production of hCTLA4Ig by protease. Medium exchange through modified flask could recover hCTLA4Ig with high cell viability and low protease activity, on the other hand, the productivity was lower than that of control. When in situ recovery was conducted at day 7 after induction in air-lift bioreactor, 1.94-fold of hCTLA4Ig could be recovered compared to control culture without in situ recovery. Consequently, in situ recovery of hCTLA4Ig from transgenic rice cell culture could enhance productivity significantly and prevent degradation of target proteins effectively.