• 제목/요약/키워드: planetary mission

검색결과 32건 처리시간 0.019초

The Double Asteroid Redirection Test: NASA's First Planetary Defense Test Mission

  • Rivkin, Andrew S.
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.35.4-35.4
    • /
    • 2021
  • The Double Asteroid Redirection Test (DART) is NASA's first planetary defense test mission, designed to test the kinetic deflector technique by crashing into an asteroid and changing its orbit. DART's launch window opens in November, 2021, with arrival at its target less than a year later in late September or early October 2022. The target of the DART spacecraft is the moonlet Dimorphos, a 150-m moonlet orbiting the 780-m asteroid Dimorphos. By changing the orbit of Dimorphos around Didymos, the results can be detected much more easily than changing the orbit of an asteroid around the Sun. I will discuss what we know about Didymos and Dimorphos, the plans for the DART mission, the expected results, and how DART is important for planetary defense in general.

  • PDF

Flight Dynamics and Navigation for Planetary Missions in Korea: Past Efforts, Recent Status, and Future Preparations

  • Song, Young-Joo;Lee, Donghun;Bae, Jonghee;Kim, Young-Rok;Choi, Su-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권3호
    • /
    • pp.119-131
    • /
    • 2018
  • In spite of a short history of only 30 years in space development, Korea has achieved outstanding space development capabilities, and became the $11^{th}$ member of the "Space Club" in 2013 by launching its own satellites with its own launch vehicle from a local space center. With the successful development and operation of more than 10 earth-orbiting satellites since 1999, Korea is now rapidly expanding its own aspirations to outer space exploration. Unlike earth-orbiting missions, planetary missions are more demanding of well-rounded technological capabilities, specifically trajectory design, analysis, and navigation. Because of the importance of relevant technologies, the Korean astronautical society devoted significant efforts to secure these basic technologies from the early 2000s. This paper revisits the numerous efforts conducted to date, specifically regarding flight dynamics and navigation technology, to prepare for future upcoming planetary missions in Korea. However, sustained efforts are still required to realize such challenging planetary missions, and efforts to date will significantly advance the relevant Korean technological capabilities.

Design of Mobility System for Ground Model of Planetary Exploration Rover

  • Kim, Younkyu;Eom, Wesub;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.413-422
    • /
    • 2012
  • In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL), followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

Open Loop Technique in FORMOSAT-3/COSMIC mission

  • Yeh, Wen-Hao;Chiu, Tsen-Chieh;Liou, Yuei-An;Huang, Cheng-Yung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.394-396
    • /
    • 2007
  • Radio occultation (RO) technique has been used in planetary science since 1960s. When signal goes through atmosphere, it is refracted due to the gradient of atmospheric refractivity. In 1995, the first low earth orbit (LEO) satellite, MicroLab-1, was launched to conduct RO mission. It receives the signal from global positioning system (GPS) satellites. After MicroLab-1, other RO missions, such as CHAMP, SAC-C, and GRACE, are executed in several years later. In 2006, Taiwan launched six LEO satellites for RO mission. The mission name is Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC). Under some abnormal situations, multipath and strong fluctuation in phase and amplitude of the signal appear in moist troposphere. Therefore, open loop (OL) technique has been applied to replace traditional phase lock loop (PLL) technique. In this paper, we will summarize the retrieval processing procedure and discuss the advantages and disadvantages of OL technique.

  • PDF

TX-선을 이용한 행성표면 분석기술과 향후 연구동향 (X-ray Spectroscopy for Planetary Surface Analysis and Future Trend)

  • 김경자;이주희;이승렬;심은섭
    • 암석학회지
    • /
    • 제19권4호
    • /
    • pp.245-254
    • /
    • 2010
  • 오늘날 X-선을 이용한 표면탐사기술은 널리 활용되는 기술의 하나이다. 또한 X-선 측정기술은 행성표면탐사를 위한 연구에서도 궤도선 및 주행장치 탑재용 과학장비로서도 성공적으로 활용된 예가 여러 차례 있었다. 우리나라는 2020년경 궤도선 및 착륙선을 이용한 달 탐사계획을 추진하고 있으며, 이에 맞추어 궤도 및 착륙선 탑재용 우선 순위 과학장비의 개발 및 달에 관한 기초연구를 해야 하는 실정이다. 따라서 X-선 측정기술을 이용한 행성탐사의 현황 및 이 분야의 기술 발전 전망에 대한 고찰을 하였다.

행성 시료 채취 기술의 연구 동향과 공학적 접근법 (Research Trend and Engineering Approach on Extraterrestrial Soil Sampling Technology)

  • 유병현
    • 한국지반환경공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.11-20
    • /
    • 2022
  • 행성 지표에서 시추와 시료 샘플 채취는 행성의 지반 정보를 밝히는데 매우 중요한 역할을 담당한다. 행성 시추장비는 탐사용 착륙선이나 로버에 탑재되어 사용된다. 우주 탐사에서 광범위한 응용 가능성 때문에 전 세계의 과학자들은 다양한 기능의 시추장비의 설계 및 개발에 관심을 보이고 있다. 그러나 우주라는 극한 상황에서 완전한 기능을 갖춘 시추장비를 제작하는 것은 어려운 일이다. 본 논문에서는 지금까지 우주 행성의 극한환경에서 시추를 포함한 시료 채취에 관한 설계 및 제작, 샘플링 방법, 지상검증 등 포괄적인 지반조사 기술 개발 과정과 고려사항에 대해 소개하고자 한다.

An Analytical Method for Low-Thrust and High-Thrust Orbital Transfers

  • Park, Sang-Young
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.47-47
    • /
    • 2003
  • Analytical formulae are presented to approximate the evolution of the semi major axis, the maneuver time, and the final mass fraction for low thrust orbital transfers with circular initial orbit, circular target orbit, and constant thrust directed either always along or always opposite the velocity vector. For comparison, the associated results for high-thrust transfers, i.e. the two-impulse Hohmann transfer, are summarized. All results are implemented in a computer code designed to analyze planar planetary and interplanetary space missions. This implementation yields fast and reasonably accurate approximations to trajectory performance boundaries. Consequently, the approach can provide trajectory analysis for each spacecraft configuration during the conceptual space mission design phase. As an example, a mission from Low-Earth Orbit (LEO) to Jupiter's moon Europa is analyzed.

  • PDF

THE NEXT-GENERATION INFRARED SPACE MISSION SPICA: PROJECT UPDATES

  • Nakagawa, Takao;Shibai, Hiroshi;Kaneda, Hidehiro;Kohno, Kotaro;Matsuhara, Hideo;Ogawa, Hiroyuki;Onaka, Takashi;Roelfsema, Peter;Yamada, Toru;SPICA Team
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.331-335
    • /
    • 2017
  • We present project updates of the next-generation infrared space mission SPICA (Space Infrared Telescope for Cosmology and Astrophysics) as of November 2015. SPICA is optimized for mid- and far-infrared astronomy with unprecedented sensitivity, which will be achieved with a cryogenically cooled (below 8 K), large (2.5 m) telescope. SPICA is expected to address a number of key questions in various fields of astrophysics, ranging from studies of the star-formation history in the universe to the formation and evolution of planetary systems. The international collaboration framework of SPICA has been revisited. SPICA under the new framework passed the Mission Definition Review by JAXA in 2015. A proposal under the new framework to ESA is being prepared. The target launch year in the new framework is 2027/28.

Apophis Rendezvous Mission: I. Science Goals

  • Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Jeong, Minsup;Choi, Jin;JeongAhn, Youngmin;Yang, Hongu;Baek, Seul-Min;Lee, Hee-Jae;Ishiguro, Masateru
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.43.4-44
    • /
    • 2021
  • 99942 Apophis is an Sq-type Aten group Near-Earth Asteroid (NEA) with an estimated size of 370 m. It will approach the Earth to come within the geostationary orbit during the upcoming encounter on April 13, 2029 to offer a unique chance to study its 1) global properties, 2) surface arrangements, and 3) their detectable changes expected to happen, in sub-meter scale. What measurable scientific goals for the asteroid in this "once a millennium" event could transform our knowledge of planetary science and defense? The Apophis rendezvous mission aims to understand the characteristics of the small solar system body's nature. It also prepares for potential threats from natural objects by measuring in-situ surface, shape, rotation, and orbit changes expected to occur when the target asteroid passes close to the Earth in 2029. We will present an overview of the mission scheduled to be launched from late 2026 to early 2027 and introduce scientific objectives.

  • PDF

Rendezvous Mission to Apophis: II. Science Goals

  • Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Jeong, Minsup;Ishiguro, Masateru;JeongAhn, Youngmin;Lee, Hee-Jae;Yang, Hongu;Baek, Seul-Min;Choi, Jin;Sim, Chae Kyung;Lee, Dukhang;Kim, Dong-Heun;Cho, Eunjin;Lee, Mingyeong;Bach, Yoonsoo;Jin, Sunho;Geem, Jooyeon;Jo, Hangbin;Choi, Sangho;Kim, Yaeji;Kim, Yoonyoung;Kwon, Yuna
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.57.3-57.3
    • /
    • 2021
  • 99942 Apophis is an Sq-type Potentially Hazardous Asteroid (PHA) with an estimated diameter of 370 m. It will approach the Earth down to 31,000 km from the surface during the encounter on April 13, 2029 UT, which is closer than geostationary satellites. This once-in-a-20,000 year opportunity would further expand our knowledge on the physical and dynamical processes which are expected to occur due to the gravitational tidal forces when an asteroid encounter with a planet. It will also provide an opportunity to promote great knowledge of the science of planetary defense. The science goal of the Apophis mission is to global-map the asteroid before and after the Earth's approach. In this talk, we will present scientific objectives, and briefly introduce instruments and operation scenarios of the mission.

  • PDF