• 제목/요약/키워드: planetary mechanism

검색결과 43건 처리시간 0.04초

소형 정밀 메카니즘을 위한 유성 감속기 개발에 대한 연구 (An investigation on development of the planetary gearheads for small precision mechanism)

  • 김주한;정중기;성하경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.723-728
    • /
    • 2003
  • Planetary gearheads are widely used in the transmissions of samll precision mechanism, automation, robotics, heavy machinery and marine vehicle . Planetary gearheads have advantages that same-axle structure, high torque transmission, low noise in comparison with spur gearheads. And, planetary gearheads are typically specified in application where space is limited. In till study included planetary type gearheads design, manufacture, efficiency test. Especially, this time performed gear mesh stiffness simulation and vibration analysis for planetary gearheads.

  • PDF

외경 15mm급 정밀 메카즘용 고출력 Actuator 개발에 관한 연구 (An study on the development of high output diameter 15mm actuator for precision mechanism)

  • 김주한;류세현;정중기;성하경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.481-483
    • /
    • 2004
  • Many application in robotics, telecommunication, automation systems etc require powerful actuator. The powerful actuator have Speeds up to high speed and high output torque efficiencies. To accomplish a powerful actuator, these powerful motor have to be combined with gearheads of the same outer diameter. So, we have developed BLDC motor and planetary type gearheads as powerful actuator. The BLDC motor have advantages that compact structure, high efficiency, high reliability. The Planetary type gearheads have advantages that same-axle structure, high torque transmission, low noise in comparison with spur gearheads. In this study included BLDC motor and planetary type gearheads design, manufacture. This time study performed for actuator of precision mechanism.

  • PDF

유성기어 감속기의 기구형태 설계에 관한 연구 (A Study on A Mechanism Type Design of General Planetary Gear Reducers)

  • 신중호;권순만;황정건;곽희성;고우식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1728-1732
    • /
    • 2005
  • Gear trains are used in many machinery for variable speed ratios. Typical shapes of gear trains are two categories: simple gear trains and planetary gear trains. Generally the methods of the design typical shapes are two way. One of the methods is trailblazing design and the other is selective design in available types. This paper presents the mechanism types when input rotating velocity and output rotating velocity are maintained for useful planetary gear reducers of twelve types. Also, this paper gives the applicable example about rotating velocity of the gear axis, carrier velocity and the organized gear specifications

  • PDF

외경 19mm급 정밀 메카즘용 고출력 Actuator 개발에 관한 연구 (An study on the development of high output diameter 19mm actuator for precision mechanism)

  • 김주한;류세현;정중기;이종배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.785-788
    • /
    • 2003
  • Many application in robotics, telecommunication, automation systems etc require powerful actuator. The powerful actuator have Speeds up to high speed and high output torque efficiencies. To accomplish a powerful actuator, these powerful motor have to be combined with gearheads of the same outer diameter. So, we have developed BLDC motor and planetary type gearheads as powerful actuator. The BLDC motor have advantages that compact structure, high efficiency, high reliability. The Planetary type gearheads have advantages that same-axle structure, high torque transmission, low noise in comparison with spur gearheads. In this study included BLDC motor and planetary type gearheads design, manufacture. This time study performed for actuator of precision mechanism.

  • PDF

비원형 유성기어열을 사용한 이앙기 식부기구의 설계 (Design of a rice transplanting mechanism with noncircular planetary-gear-train system)

  • 배강열
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.108-116
    • /
    • 2005
  • Transplanting accuracy of a rice transplanter mainly depends on the trajectory of the hoe for picking, conveying and transplanting of seedlings as well as the return motion. The trajectory can be decided and prescribed to be suitable in treating seedlings fur a prevailing soil condition. For the purpose of the transplanting accuracy, the design of a transplanting mechanism would be carried out using a planetary-gear-train system instead of the four bar linkage system. In this study, a design method of transplanting mechanism is theoretically proposed by synthesizing a noncircular planetary-gear-train system fur the tool (hoe) to trace a prescribed trajectory. The method utilizes an optimization approach to decide the lengths of an arm and a tool, the inverse kinematics to figure out the configuration angles of the two links, the roll contact condition in transmitting motion between the gears, and a linearization approach to obtain the shapes of the gears. Based on the proposed method, the shapes of the gears and the lengths of the tools of the planetary-gear-train system are determined fur three prescribed trajectories. A kinematical simulation with a commercialized package program is also carried out to confirm that the gear-train system synthesized with the proposed method is able to trace the prescribed trajectory.

Design of Mobility System for Ground Model of Planetary Exploration Rover

  • Kim, Younkyu;Eom, Wesub;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.413-422
    • /
    • 2012
  • In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL), followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

A ROLE OF PROTO-ACCRETION DISK: HEATING PROTO-PLANETS TO EVAPORATION

  • Chang, Heon-Young;Choi, Chul-Sung
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권3호
    • /
    • pp.181-186
    • /
    • 2002
  • We study a role of the proto-accretion disk during the formation of the planetary system, which is motivated with recent X-ray observations. There is an observational correlation of the mass of extrasolar planets with their orbital period, which also shows the minimum orbital period. This is insufficiently accounted for by the selection effect alone. Besides, most of planetary formation theories predict the lower limit of semimajor axes of the planetary orbits around 0.01 AU. While the migration theory involving the accretion disk is the most favorable theory, it causes too fast migration and requires the braking mechanism to halt the planet~0.01 AU. The induced gap in the accretion disk due to the planet and/or the truncated disk are desperately required to stop the planet. We explore the planetary evaporation in the accretion disk as another possible scenario to explain the observational lack of massive close-in planets. We calculate the location where the planet is evaporated when the mass and the radius of the planet are given, and find that the evaporation location is approximately proportional to the mass of the planet as ${m_p}^{-1.3}$ and the radius of the planet as ${r_p}^{1.3}$. Therefore, we conclude that even the standard cool accretion disk becomes marginally hot to make the small planet evaporate at~0.01 AU. We discuss other auxiliary mechanisms which may provide the accretion disk with extra heats other than the viscous friction, which may consequently make a larger planet evaporate.

소형로봇을 위한 원추형 스프링 기반의 도약 메커니즘의 개발 (Development of Conical Spring-based Jumping Mechanism for a Portable Robot)

  • 김병상;이장운;김현중;;송재복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1195-1200
    • /
    • 2007
  • It is desirable that the guard robot should be small-sized and light-weighted to increase its portability. In addition, it should be able to overcome a relatively high obstacle to cope with different situations. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes the jumping mechanism based on the conical spring for a small robot. Both the clutch mechanism and conical spring are incorporated into the jumping mechanism. In the clutch mechanism, the spring can be immediately compressed and released by one actuator with the planetary gear train and one-way clutch. The robot equipped with the jumping mechanism can overcome the obstacles which are higher than its height. In this paper, the characteristic of the conical spring for the jumping robot is determined and the small-sized, lightweight jumping mechanism is developed. The validity of the jumping mechanism was verified by various experiments. It is shown that the robot using this mechanism can provide good mobility in the rough terrain.

  • PDF

Development of Electric Motion Wheel Chair Driving System using Planetary Gear Device

  • Ham, Seong-Hun;Youm, Kwang-Wook
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.199-206
    • /
    • 2020
  • A wheelchair is an essential rehabilitation assistant device for the movement of paraplegia patients and generally paralyzed patients who cannot walk normally. In particular, the applicability of the manual/motorized wheelchair is gradually increasing. Until now, decelerators using belt, chain and worm gears, etc have been widely used. However, a decelerator takes a large space although it is a simple device and thus is not ideal for the driving part of manual/motorized wheelchair. For these reasons, in this study we developed a driving part producing a large driving force through a decelerator using planetary gears rather than conventional worm gear-based decelerator. We designed the tooth profile of the planetary gears for decelerator using Kisssoft program, In addition, we designed the driving part so as to apply it to the wheels of conventional wheelchairs, and then optimized the mechanism for the principles of manual/motorized transposition of the driving part and the operational principles. Based on the results of this study, we finally designed and manufactured a driving part for wheelchair decelerator in the form of planetary gears with 1 sun gear, 2 planetary gears and 1 ring gear.