• 제목/요약/키워드: plane-stress

Search Result 1,378, Processing Time 0.026 seconds

A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks (암석의 강도 및 변형거동의 온도의존성에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

Experimental Study on Plane Stress Fracture Toughness and Fatigue Crack Propagation of SS304 and SS316 (SS304와 SS316의 평면응력 파괴인성치 측정과 피로 균열 전파에 대한 실험적 연구)

  • Lee, O.S.;Han, Y.S.;Yoo, S.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.61-69
    • /
    • 1997
  • A simple and relatively new experimental method is proposed to estimate the plane stress fracture toughness by using compact tension (CT) specimen. The anti-buckling plates (fabricated to prevent the buckling caused by the 45 plastic yielding around crack tip under the plane stress condition) help to determine the relatively accurate plane stress fracture toughness of two stainless steels (SS304 and SS316). The fatigue crack propagation behavior of two stainless steels under two different loading conditions such as 10Hz and 5Hz frequency fatigue loadings was investigated by using image analysis technique (IAT) which renders several technical advantages over various conventional measuring methods. It was found that the IAT could be used to estimate fatigue crack lengths more effectively. Furthermore, it was suggested that we might control the measuring time interval for fatigue crack propagation by nearly automatically controlled technical process with the help of IAT.

  • PDF

Localized deformation in sands and glass beads subjected to plane strain compressions

  • Zhuang, Li;Nakata, Yukio;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.499-517
    • /
    • 2013
  • In order to investigate shear behavior of granular materials due to excavation and associated unloading actions, load-controlled plane strain compression tests under decreasing confining pressure were performed under drained conditions and the results were compared with the conventional plane strain compression tests. Four types of granular material consisting of two quartz sands and two glass beads were used to investigate particle shape effects. It is clarified that macro stress-strain behavior is more easily influenced by stress level and stress path in sands than in glass beads. Development of localized deformation was analyzed using photogrammetry method. It was found that shear bands are generated before peak strength and shear band patterns vary during the whole shearing process. Under the same test condition, shear band thickness in the two sands was smaller than that in one type of glass beads even if the materials have almost the same mean particle size. Shear band thickness also decreased with increase of confining pressure regardless of particle shape or size. Local maximum shear strain inside shear band grew approximately linearly with global axial strain from onset of shear band to the end of softening. The growth rate is found related to shear band thickness. The wider shear band, the relatively lower the growth rate. Finally, observed shear band inclination angles were compared with classical Coulomb and Roscoe solutions and different results were found for sands and glass beads.

Strength Characteristics of Decomposed Granite Soil in Cubical Triaxial Test (입방체형 삼축시험에 의한 다짐화강토의 전단강도 특성)

  • 정진섭;김찬기;박승해;김기황
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.64-73
    • /
    • 1996
  • The three-dimensional strength behavior of compacted decomposed granite soil was studied using cubical triaxial tests with independent control of the three principal stresses. All specimens were loaded under conditions of principal stress direction fixed and aligned with the directions of compacted plane. For comparable test conditions, the major principal strain and volume strain to failure were smallest when the major principal stress acted perpendicular to the compacted plane. The opposite extremes were obtained when the major principal stress acted parallel to the compacted plane. In cubical triaxial tests with same b values and with ${\theta}$ values in one of three sectors of the octahedral plane, independent of the range of ${\theta}$, higher friction angles are obtained in tests with b greater than in triaxial compression tests in which b 0.0, Comparison between the results of the drained cubical triaxial tests on lksan compacted decomposed granite soil and the cross section of the Mohr-Coulomb failure surface as well as the cross section of the Mohr-Coulomb failure surface were made. Lade's isotropic failure criterion based on vertical specimens overestimates the strengths for tests performed with values of 0 between 90˚ and 1 50˚ the Mohr-Coulomb criterion generally underestimates the strengths of tests performed with values of ${\theta}$ between $0^{\circ}$ and $180^{\circ}$ except around the $120^{\circ}$.

  • PDF

An Experimental Study on the Stress Behavior of Coped Stringers in Steel Railway Bridge - I : the Reason Why Crack Occurs (철도교 세로보 절취부에서의 응력거동에 관한 실험적 연구 - I : 균열 발생원인)

  • Li, Guang Ri;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.299-305
    • /
    • 2009
  • In this study, in order to research the causes lead to fatigue crack in the coped stringer of a steel railway bridge, we take the steel railway bridge which actually occurs fatigue crack as a research object and manufacture the full size of crossbeam-stringer and floor system model to perform the experimental test. The results indicates that, the fatigue crack in the top of coped area of stringers is caused by the reciprocal action of the in plane stress in the tip of coped area of web by the negative moment occurred in the end of the stringers. While the fatigue crack in the bottom of coped area of stringers is due to the plane stress caused by the out-plane deformation relative to the bottom of coped area of web of the fixed end in the stringers.

Calculation of Stres Intensity Factor in Arbitrarily Shaped Plane Crack by Mobius Transformation (뫼비우스 사상을 이용한 임의의 3차원 평면균열에서의 응력확대계수 계산)

  • An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.734-740
    • /
    • 2001
  • In this paper the stress intensity factor under uniform pressure in the arbitrarily-shaped plane crack configuration transformed elliptic crack by Mobius mapping are determined. Using Dysons formula Boussinesq-Papkovich potentials for mode I deformation are constructed. In the example the stress intensity factors are approximately calculated by least square method.

Comparison of error estimation methods and adaptivity for plane stress/strain problems

  • Ozakca, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.579-608
    • /
    • 2003
  • This paper deals with adaptive finite element analysis of linearly elastic structures using different error estimators based on flux projection (or best guess stress values) and residual methods. Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling of adaptive finite element analysis with automatic mesh generation. Details about different error estimators are provided and their performance, reliability and convergence are studied using six node quadratic triangular elements. Several examples are presented to demonstrate the reliability of different error estimators.

The stress analysis of a shear wall with matrix displacement method

  • Ergun, Mustafa;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.205-226
    • /
    • 2015
  • Finite element method (FEM) is an effective quantitative method to solve complex engineering problems. The basic idea of FEM for a complex problem is to be able to find a solution by reducing the problem made simple. If mathematical tools are inadequate to obtain precise result, even approximate result, FEM is the only method that can be used for structural analyses. In FEM, the domain is divided into a large number of simple, small and interconnected sub-regions called finite elements. FEM has been used commonly for linear and nonlinear analyses of different types of structures to give us accurate results of plane stress and plane strain problems in civil engineering area. In this paper, FEM is used to investigate stress analysis of a shear wall which is subjected to concentrated loads and fundamental principles of stress analysis of the shear wall are presented by using matrix displacement method in this paper. This study is consisting of two parts. In the first part, the shear wall is discretized with constant strain triangular finite elements and stiffness matrix and load vector which is attained from external effects are calculated for each of finite elements using matrix displacement method. As to second part of the study, finite element analysis of the shear wall is made by ANSYS software program. Results obtained in the second part are presented with tables and graphics, also results of each part is compared with each other, so the performance of the matrix displacement method is demonstrated. The solutions obtained by using the proposed method show excellent agreements with the results of ANSYS. The results show that this method is effective and preferable for the stress analysis of shell structures. Further studies should be carried out to be able to prove the efficiency of the matrix displacement method on the solution of plane stress problems using different types of structures.

Analytical Study on Characteristics of von Mises Yield Criterion under Plane Strain Condition (평면변형률상태에서의 von Mises 항복기준의 특성에 관한 이론적 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6391-6396
    • /
    • 2015
  • In order to investigate characteristics of the von Mises yield criterion under 2 dimensional stress condition, two cases of plane strain were studied. One of which was for zero elastic strain and the other was for zero plastic strain increment. Yield functions for the plane strain condition for zero elastic strain and for the plane stress condition were represented as ellipse and the two yield functions were compared by ratios of major axis, minor axis and eccentricity and it was seen that the ratio of minor axis was the same between the two cases and the ratios of major axis and eccentricity were functions of Poisson's ratio. Region of elastic behavior obtained from considering plane strain condition of zero elastic strain increases as the Poisson's ratio increases. Yield function for plane strain obtained from considering zero plastic increment and associate flow rule was displayed as straight line and the region of elastic behavior was greater than that for the case of plane stress.

A Constitutive Model for Rotation of Principal Stress Axes during Direct Simple Shear Deformation (직접단순전단변형에 따른 주응력 방향의 회전을 고려한 구성모델)

  • Park, Sung-Sik;Lee, Jong-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.53-62
    • /
    • 2008
  • A constitutive model, which can simulate the effect of principal stress rotation associated with direct simple shear test, is proposed in this study. The model is based on two mobilized planes. The plastic strains occur from the two mobilized planes, and depend on stress state, and they are added. The first plane is a plane of maximum shear stress, which rotates about the horizontal axis, and the second plane is a horizontal plane which is spatially fixed. The second plane is used to consider the effect of principal stress rotation on simple shear tests under different stress states. The soil skeleton behavior observed in drained simple shear tests is captured in the model. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program FLAC. The model is first calibrated with drained simple shear tests on loose Fraser River sand. The measured shear stress and volume change are partially induced by principal stress rotation and compared with model calculations. The model is verified by comparing predicted and measured settlements due to rigid footing resting on loose sands. Settlements predicted by the proposed model were very similar to measured settlements. Mohr-Coulomb model can not consider the effect of principal stress rotation and its prediction was only 20% of measured settlements.