• Title/Summary/Keyword: plane stress conditions

Search Result 231, Processing Time 0.034 seconds

Probability Analysis of Plane Strain Element using Boundary Element Method (경계요소법을 이용한 평면변형율요소의 확률해석)

  • Jeon, Jeong-Bae;Yoon, Seong-Soo;Park, Jin-Seon;Lee, Hyeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.39-46
    • /
    • 2012
  • The objectives of this study is intended to analyze stresses using the boundary element method and probability analysis for agricultural structure. Loads and material properties are an important factor when analyzing the structure. Until now, designing structure, loads and material properties are applied deterministic value. However, load and material properties involve uncertainties due to those change probabilistic and deterministic methods could not consider uncertainties. To solve these problems, the reliability analysis based on probability properties scheme was developed. Reliability analysis is easy to approach to analysis frame structure, however it has limitation when solving plane stress strain problems a kind of agricultural structures. The BEM (Boundary Element Method) is able to analysis plane strain problems by boundary conditions. Thus, this study applied boundary element method to analysis plane strain problem, load and material properties as a probabilistic value to calculate the analytical model using Monte Carlo simulations were developed.

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Benjeddou, Ayech
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.275-302
    • /
    • 2015
  • Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.

Nonlinear Finite Element Analysis for Mooring Chain Considering OPB/IPB (OPB/IPB를 고려한 계류체인의 비선형 수치해석)

  • Kim, Min-suk;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.299-307
    • /
    • 2017
  • The design of the mooring line to maintain the position of an offshore structure in rough marine environments is recognized as a very important consideration. Conventional fatigue evaluation of a mooring line was performed by considering the tensile force acting on the mooring line, but the mooring line broke after 238 days in the girassol area even though the expected fatigue life was expected to be longer. The causes of this event are known to be due to OPB/IPB (out-of-plane bending/in-plane bending) caused by chain link friction due to the excessive tensile strength of the mooring line. In this study, three models with different boundary conditions were proposed for fatigue analysis of a mooring line considering OPB/IPB. Interlink stiffness was calculated by nonlinear structure analysis and a stress concentration factor was derived. In addition, the sensitivity of interlink stiffness according to the magnitude of tensile force, large deformation effect, and coefficient of friction was analyzed, and the effect of critical elastic slip and bending moment calculation position on interlink stiffness was confirmed.

Residual Stress Evolution during Leveling of Hot Rolled High Strength Coils and Camber Prediction by Residual Stress Distribution (냉간 성형용 열연 고강도 강판의 교정 중 잔류응력 변화와 절단 후 캠버 발생 예측)

  • Park, K.C.;Ryu, J.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.107-112
    • /
    • 2008
  • In order to investigate the residual stress evolution during the leveling process of hot rolled high strength coils for cold forming, the in-plane residual stress of plate sampled at SPM, rough leveler and finish leveler were measured by cutting method. Residual stress was localized near the edge of plate. As the thickness of plate was increased, the size of residual stress region was expanded. The gradient of residual stress within the plate was reduced during the leveling process. But the residual stress itself was not removed completely within the ranges of tested conditions. The exact camber of cut plate was able to be predicted by the measurement of residual stress distribution after leveling of the plate.

Residual Stress Distribution according to Working Conditions in Grinding Operation (연삭가공시 연삭조건에 따른 잔류응력 분포에 관한 연구)

  • Cheong, Chae-Cheon;Cha, Il-Nam;Kim, Gyung-Nyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.23-28
    • /
    • 1990
  • This study is to investigate the magnitude, direction and distribution of residual stresses in surface ground plate according to working conditions. The specimens were made of structural carbon steel and were machined in various grinding conditions. These were divided in two groups; heat-treated materials and non-heat-treated materials. In each working condition, let the ground specimen generate displacements using deflection-etching techniques. At the same time, these displacements were precisely measured with electronic micrometer. Through the relation formula between the plane stress and strain, which was derived using these measured data, the values of residual stress are calculated, and the results are analyzed. These results are as follows : 1. According to the working conditions in this experiment, it can be seen that the distribution of residual stress generally had same trend and the maximum residual stress remained in 20~30 ((${\mu}m$) beneath the surface. 2. It is observed that compressive residual stress changes into tensile stress in 5~20 (${\mu}m$) beneath the surface. It is suggested that such phenomenon is originated from the friction effect in grinding process. 3. As the hardness increases by the heat treatment, residual stress increases. 4. As the fatigue strength increases by the compressive residual stress, it is desirable that the dowm feed and table feed reduce. 5. It can be seen that the more great the down feed and table feed increase, the more close the changing point, where the stress changed from compressive to tensile, is colse to the surface. This is due to the resultant effects of the grinding temperature and resistence are larger than the effect of the friction.

  • PDF

Residual Stress Evolution during Leveling of Hot Rolled Cold Forming Purpose High Strength Coils and Camber Prediction (냉간 성형용 열연 고강도 강판의 교정 중 잔류음력 변화와 절단 후 camber 발생 거동 연구)

  • Park, K.C.;Ryu, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.112-115
    • /
    • 2007
  • In order to investigate the residual stress evolution during the leveling process of hot rolled high strength coils for cold forming, the in-plane residual stress of plate sampled at SPM, rough leveler and finish leveler were measured by cutting method. Residual stress was localized near the edge of plate. As the thickness of plate was increased, the region with residual stress was expanded. The gradient of residual stress within plate was reduced during the leveling process. But the residual stress itself was not removed at the ranges of tested conditions. From the measured residual stress distribution within the plate, camber of plate cut to small width was predicted exactly within error range of experiment.

  • PDF

The Fatigue Strength of Steel Bridge Components Attached with Non-load Carrying Out-of Plane Gusset Plate (하중 비전달형 면외 거셋판이 부착된 강교량 부재의 피로강도)

  • Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.779-788
    • /
    • 1998
  • This paper presents the results of the experimental and analytical investigation for the fatigue strength of welded details frequently used in steel bridges, especially for the details with relatively lower fatigue strength. Considering the measured stress fatigue cracking initiated at toe of the transverse fillet weld joining the gusset plates to the web because of the stress concentration that developed as a result of the geometric conditions and the greater probability of microscopic discontinuities at the fillet weld toe A comparison was made of the stress calculated by considering geometric aspect of bead and measured at same position. They indicate that the geometric conditions of the weld toe result in similar stress concentration on both FEM models and test results. The test results were compared with the fatigue criteria of AASHTO, JSSC specifications. Specimens of 80 and 150mm gusset plate configuration tested either respectively equaled or exceeded the fatigue resistance provided by category D and E of the AASHTO specification. It also satisfied the category F and G of JSSC. Both WG1 and WG3 specimen tend to provide S-N curves with a store near -0.3 less than AASHTO and JSSC.

  • PDF

A Study on the Coupled Vibration of Train wheel and Rail Dynamic Chaacteristics of Train Wheel with the Stepped Thickness (차륜과 철로의 연성진동에 관한 연구)

  • 김광식;박문태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.142-144
    • /
    • 1986
  • The research was conducted for the purpose of examining the dynamic characteristics of train wheel at the running state and preventing the vibrations of the high speed railway. The stress at the boundary surface of web and rim, .sigma./sub c/, was analyzed in consideration of the uniform In-plane compressive stress depending on the conditions of rolling and the rotation of train wheel. Then the equation of transverse vibration of the annular plate with the stepped thickness was analyzed by Rayleigh-Ritz's method.

  • PDF

Fourier series expansion method for plated-structures

  • Deng, Jiann-Gang;Cheng, Fu-Ping
    • Structural Engineering and Mechanics
    • /
    • v.8 no.4
    • /
    • pp.343-360
    • /
    • 1999
  • This work applies a structural analysis method based on an analytical solution from the Fourier series which transforms a half-range cosine expansion into a static solution involving plated structures. Two sub-matrices of in-plane and plate-bending problems are also formulated and coupled with the prescribed boundary conditions for these variables, thereby providing a convenient basis for a numerical solution. In addition, the plate connection are introduced by describing the connection between common boundary continuity and equilibrium. Moreover, a simple computation scheme is proposed. Numerical results are then compared with finite element results, demonstrating the numerical scheme's versatility and accuracy.

Development of Fretting Fatigue Parameter (접촉피로 파라미터의 개발)

  • Lee, Hyuk-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.92-99
    • /
    • 2011
  • In this study, new multi-axial, critical plane based, fretting fatigue crack initiation parameter is developed by the addition of a new term into the Modified Shear Stress Range(MSSR) parameter. The newly developed parameter (MSSR') is then used to evaluate fretting fatigue life of titanium alloy, Ti-6A1-4V with various contact conditions. Finite element analysis is also used in order to obtain stress distribution on the contact surface during fretting fatigue test, which is then used for the calculation of fretting fatigue parameter. The MSSR' parameter shows better performance in predicting fretting fatigue lives from the conventional fatigue data, and less scattering within fretting fatigue data with different contact geometries.