• Title/Summary/Keyword: plane recognition

Search Result 146, Processing Time 0.029 seconds

A Study on the Data Generation and Effectiveness of GAN-Based Object Form Learning (GAN 기반의 물체 형태 학습용 데이터 생성과 유효성에 관한 연구)

  • Choi, Donggyu;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.44-46
    • /
    • 2022
  • Various object recognition using artificial intelligence basically shows planar results. It is based on classifying objects or identifying what objects are on the image. However, the original object has a three-dimensional shape, not a plane, and although the perception to obtain only simple results from the image does not matter, there is a lot of information that is insufficient when used in various fields. In this paper, checks the method of generating data in various fields of objects and whether it is meaningful by utilizing the characteristics of Layer that generates intermediate results with respect to image generation based on the GAN algorithm. It solves some of the problems in the hardware and collection process for generating existing multi-faceted data, and confirms that it can be utilized after data generation on several limited objects.

  • PDF

Neural correlations of familiar and Unfamiliar face recognition by using Event Related fMRI

  • Kim, Jeong-Seok;Jeun, Sin-Soo;Kim, Bum-Soo;Choe, Bo-Young;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.78-78
    • /
    • 2003
  • Purpose: This event related fMRI study was to further our understanding about how different brain regions could contribute to effective access of specific information stored in long term memory. This experiment has allowed us to determine the brain regions involved in recognition of familiar faces among non familiar faces. Materials and Methods: Twelve right handed normal, healthy volunteer adults participated in face recognition experiment. The paradigm consists of two 40 familiar faces, 40 unfamiliar faces and control base with scrambled faces in a randomized order, with null events. Volunteers were instructed to press on one of two possible buttons of a response box to indicate whether a face was familiar or not. Incorrect answers were ignored. A 1.5T MRI system(GMENS) was employed to evaluate brain activity by using blood oxygen level dependent (BOLD) contrast. Gradient Echo EPI sequence with TR/TE= 2250/40 msec was used for 17 contiguous axial slices of 7mm thickness, covering the whole brain volume (240mm Field of view, 64 ${\times}$ 64 in plane resolution). The acquired data were applied to SPM99 for the processing such as realignment, normalization, smoothing, statistical ANOVA and statistical preference. Results/Disscusion: The comparison of familiar faces vs unfamiliar faces yielded significant activations in the medial temporal regions, the occipito temporal regions and in frontal regions. These results suggest that when volunteers are asked to recognize familiar faces among unfamiliar faces they tend to activate several regions frequently involved in face perception. The medial temporal regions are also activated for familiar and unfamiliar faces. This interesting result suggests a contribution of this structure in the attempt to match perceived faces with pre existing semantic representations stored in long term memory.

  • PDF

Pattern Recognition Improvement of an Ultrasonic Sensor System Using Neuro-Fuzzy Signal Processing (초음파센서 시스템의 패턴인식 개선을 위한 뉴로퍼지 신호처리)

  • Na, Seung-You;Park, Min-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.17-26
    • /
    • 1998
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But for the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. The time-of-flight(TOF) method generally used for distance measurement can not distinguish small object patterns of plane, corner or edge. To resolve the problem, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensors has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. Also simple patterns are classified based on analyzing signal reflections. In this paper we propose a method of a sensor array system with improved capability in pattern distinction using electronic circuits accompanying the sensor array, and intelligent algorithm based on neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. A set of different return signals from neighborhood sensors is manipulated to provide enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  • PDF

Classification of Axis-symmetric Flaws with Non-Symmetric Cross-Sections using Simulated Eddy Current Testing Signals (모사 와전류 탐상신호를 이용한 비대칭 단면을 갖는 축대칭 결함의 형상분류)

  • Song, S.J.;Kim, C.H.;Shin, Y.K.;Lee, H.B.;Park, Y.W.;Yim, C.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.510-517
    • /
    • 2001
  • This paper describes an initial study for the application of eddy current pattern recognition approaches to more realistic flaw characterization in steam generator tubes. For this purpose, finite-element model-based theoretical eddy current testing (ECT) signals are simulated from 5 types of OD flaws with the variation in flaw size parameters and testing frequency. In addition, three kinds of software are developed for the convenience in the application of steps in pattern recognition approaches such as feature extraction feature selection and classification by probabilistic neural networks (PNNs). The cross point of the ECT signals simulated from flaws with non-symmetric cross-sections shows the deviation from the origin of the impedance plane. New features taking advantages of this phenomenon are added to complete the feature set with a total of 18 features. Then, classification with PNNs are performed based on this feature set. The PNN classifiers show high performance for the identification of symmetry in the cross-section of a flaw. However, they show very limited success in the interrogation of the sharpness of flaw tips.

  • PDF

Automatic Face and Eyes Detection: A Scale and Rotation Invariant Approach based on Log-Polar Mapping (Log-Polar 사상의 크기와 회전 불변 특성을 이용한 얼굴과 눈 검출)

  • Choi, Il;Chien, Sung-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.88-100
    • /
    • 1999
  • Detecting human face and facial landmarks automatically in an image is as essential step to a fully automatic face recognition system. In this paper, we present a new approach to detect automatically face and its eyes of input image with scale and rotation variations of faces by using an intensity based template matching with a single log-polar face template. In a template-based matching it is necessary to normalize the scale changes and rotations of an input image to a template ones. The log-polar mapping which simulates space-variant human visual system converts scale changes and rotations of input image into constant horizontal and cyclic vertical shifts in the output plane. Intelligent use of this property allows us to shift of the candidate log-polar faces mapped at various fixation points of an input image to be matched to a template over the log-polar plane. Thus, the proposed method eliminates the need of adapting multitemplate and multiresolution schemes, which inevitably give rise to intensive computation involved to cope with scale and rotation variations of faces. Through this scale and rotation involved to cope with scale and method can lead to detecting face and its eyes simultaneously. Experimental results on a database of 795 images show over 98% detection rate.

  • PDF

Study on the Neural Network for Handwritten Hangul Syllabic Character Recognition (수정된 Neocognitron을 사용한 필기체 한글인식)

  • 김은진;백종현
    • Korean Journal of Cognitive Science
    • /
    • v.3 no.1
    • /
    • pp.61-78
    • /
    • 1991
  • This paper descibes the study of application of a modified Neocognitron model with backward path for the recognition of Hangul(Korean) syllabic characters. In this original report, Fukushima demonstrated that Neocognitron can recognize hand written numerical characters of $19{\times}19$ size. This version accepts $61{\times}61$ images of handwritten Hangul syllabic characters or a part thereof with a mouse or with a scanner. It consists of an input layer and 3 pairs of Uc layers. The last Uc layer of this version, recognition layer, consists of 24 planes of $5{\times}5$ cells which tell us the identity of a grapheme receiving attention at one time and its relative position in the input layer respectively. It has been trained 10 simple vowel graphemes and 14 simple consonant graphemes and their spatial features. Some patterns which are not easily trained have been trained more extrensively. The trained nerwork which can classify indivisual graphemes with possible deformation, noise, size variance, transformation or retation wre then used to recongnize Korean syllabic characters using its selective attention mechanism for image segmentation task within a syllabic characters. On initial sample tests on input characters our model could recognize correctly up to 79%of the various test patterns of handwritten Korean syllabic charactes. The results of this study indeed show Neocognitron as a powerful model to reconginze deformed handwritten charavters with big size characters set via segmenting its input images as recognizable parts. The same approach may be applied to the recogition of chinese characters, which are much complex both in its structures and its graphemes. But processing time appears to be the bottleneck before it can be implemented. Special hardware such as neural chip appear to be an essestial prerquisite for the practical use of the model. Further work is required before enabling the model to recognize Korean syllabic characters consisting of complex vowels and complex consonants. Correct recognition of the neighboring area between two simple graphemes would become more critical for this task.

Enhanced Reconstruction of Heavy Occluded Objects Using Estimation of Variance in Volumetric Integral Imaging (VII) (Volumetric 집적영상에서 분산 추정을 이용한 심하게 은폐된 물체의 향상된 복원)

  • Hwang, Yong-Seok;Kim, Eun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.389-393
    • /
    • 2008
  • Enhanced reconstruction of heavy occluded objects was represented using estimation of variance in computational integral imaging. The system is analyzed to extract information of enhanced reconstruction from an elemental images set. To obtain elemental images with enhanced resolution, low focus error, and large depth of focus, synthetic aperture integral imaging (SAII) utilizing a digital camera has been adopted. The focused areas of the reconstructed image are varied with the distance of the reconstruction plane. When an occluded object is occluded heavily, an occluded object can not be reconstructed by removing the occluding object. To obtain reconstruction of the occluded object by remedying the effect of heavy occlusion, the statistical technique has been adopted.

A Study on the Teaching the Concept of the Right Triangle through Classification Activity (분류 활동을 통한 직각삼각형 개념 지도에 관한 연구)

  • Roh, Eun Hwan;Kim, Jung Hoon;Kang, Mi Jeong;Shin, Han Young;Jang, Song Yi
    • East Asian mathematical journal
    • /
    • v.34 no.4
    • /
    • pp.371-402
    • /
    • 2018
  • The researchers set up a research question to find out how to teach the concept of a right triangle through classification activities after listening to the conversations of fellow teachers about the recently revised textbooks. First, a questionnaire was created to confirm the objectivity of the research problem, data were collected through online and offline, and interviews were conducted with some of the respondents. As a result, it confirmed that there was a considerable difference in the perception of the research study about the direction of revising the curriculum called 'student participation centered' and 'the possibility of achieving the learning objective'. Then, we analyzed the critical interpretations used in the third grade math textbook Lesson 2. 'Plane Figure' part 4 and 5. Finally, by analyzing the results of the recognition analysis and textbook analysis, we proposed two learning methods which can link the triangle classification activity and the right triangle concept. Based on the results of the research, we obtained suggestions that a teaching should be made regarding that the classification process may be changed according to the student's prior knowledge and the process of classification activities may be different according to the viewpoint and classification criteria.

On Motion Planning for Human-Following of Mobile Robot in a Predictable Intelligent Space

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.101-110
    • /
    • 2004
  • The robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, humans and robots need to be in close proximity to each other as much as possible. Moreover, it is necessary for their interactions to occur naturally. It is desirable for a robot to carry out human following, as one of the human-affinitive movements. The human-following robot requires several techniques: the recognition of the moving objects, the feature extraction and visual tracking, and the trajectory generation for following a human stably. In this research, a predictable intelligent space is used in order to achieve these goals. An intelligent space is a 3-D environment in which many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents providing humans with services. A mobile robot is controlled to follow a walking human using distributed intelligent sensors as stably and precisely as possible. The moving objects is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to follow the walking human, the linear and angular velocities are estimated and utilized. The computer simulation and experimental results of estimating and following of the walking human with the mobile robot are presented.

Development of Automatic Hole Position Measurement System using the CCD-camera (CCD-카메라를 이용한 홀 변위 자동측정시스템 개발)

  • 김병규;최재영;강희준;노영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.127-130
    • /
    • 2004
  • For the quality control of the industrial products, an automatic hole measuring system has been developed. The measurement device allows X-Y movement due to contact forces between a hole and its own circular cone and the device is attached to an industrial robot. Its measurement accuracy is about 0.04mm. This movement of the plate is measured by two LVDT sensor system. But this system using the LVDT sensors is restricted by high cost and precision of measurement and correspondence of environment so particularly, a vision system with CCD-Camera is discussed in this paper for the above mentioned purpose. The device consists of two of two links jointed with hinge pins basically and, they guarantee free movement of the touch prove attached on the second link in the same plane. These links are returned to home position by the spring plungers automatically after each process for the next one. On the surface of the touch prove, it has a circular white mark for camera recognition. The system detect and notify the center coordinate of capture mark image through the image processing. Its measuring accuracy has been proved to be about $\pm$0.01mm through the repeated implementation over 200 times. This technique will shows the advantage of touch-indirect image capture idea using cone-shaped touch prove in various symmetrical shaped holes particulary, like tapped holes, chamfered holes, etc As a result, we attained our object in a view of the accuracy, economical efficiency, and functionality

  • PDF