• Title/Summary/Keyword: plane geometry

Search Result 432, Processing Time 0.029 seconds

Injection of a Denser Fluid into a Rotating Cylindrical Container Filled with Homogeneous Lighter Fluid (균질의 회전유체에 고밀도유체 주입실험)

  • 나정열;황병준
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.355-364
    • /
    • 1995
  • A heavy fluid is injected to a rotating cylindrical container of flat or inclined bottom filled with homogeneous lighter fluid. Continuous flow-in and spreading patterns over the bottom of the container are observed and at the same time upper-layer motions induced by the movement of the heavy fluid are traced by thymol blue solution. Regardless of bottom geometry, the injected denser fluid is deflected toward "western wall" and continuous its path along the boundary with radial spreading which occurs in the bottom boundary layer to make a quite asymmetric flow. When the bottom contains a slope(${\beta}$-plane), increased pressure gradient causes the fluid move faster to produce a stronger Coriolis force. This makes the width of the flow narrower than that of f-plane. But, when the denser flow reaches the southern part of the container, a local-depth of denser fluid increases (much greater than the Ekman-layer depth) such that the spreading velocity along the wall is reduced and the interfacial slope increases to make the upper-layer adjust geographically to have oppositely directed upper-layer motion along the interfacial boundary. The role of the denser fluid in terms of vorticity generation in the upper-layer is such that it produces local topographic effect over the western half of the container and also induces vortex-tube stretching which is especially dominant in the f-plane.

  • PDF

Antiplane Problem of Interfacial Cracks Bonded with Transversely Isotropic Piezoelectric Media (횡등방 압전재료의 면외 계면균열문제)

  • Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.665-672
    • /
    • 2012
  • Interfacial cracks bonded with dissimilar transversely isotropic piezoelectric media that are subjected to combined anti-plane mechanical and in-plane electrical loading are analyzed. The problem is formulated using complex function theory, from which the Hilbert problem is derived. By solving the Hilbert problem, the general form solution is obtained. Using this solution, closed-form solutions for one or two finite cracks as well as a semi-infinite crack are obtained, for the problem in which one concentrated mechanical and electrical load is imposed on the crack surface. This solution could be used as a Green's function to generate solutions to other problems with the same geometry but different loading conditions.

Sectional Forming Analysis of Automobile Sheet Metal Parts by using Rigid-Plastic Explicit Finite Element Method (강소성 외연적 유한요소법을 이용한 자동차 박판제품의 성형공정에 대한 단면해석)

  • Ahn, D.G.;Jung, D.W.;Yang, D.Y.;Lee, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.19-28
    • /
    • 1995
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modelling of material requiring large computation time. In the present work, rigid-plastic explicit finite element method is introduced for analysis of sheet metal forming processes in which plane strain normal anisotropy condition can be assumed by dividing the whole piece into sections. The explicit scheme is in good agreement with the implicit scheme for numerical analysis and experimental results of auto-body panels. The proposed rigid-plastic explicit finite element method can be used as robust and efficient computational method for prediction of defects and forming severity.

  • PDF

Mean Cutting Force Prediction in Ball-End Milling of Slanted Surface Using Force Map (볼엔드밀 경사면 가공에서 절삭력 맵을 이용한 평균절삭력 예측)

  • 김규만;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.212-219
    • /
    • 1998
  • During machining of dies and molds with sculptured surfaces. the cutter contact area changes continuously and results in cutting force variation. In order to implement cutting force prediction model into a CAM system, an effective and fast method is necessary. In this paper. a new method is proposed to predict mean cutting force. The cutter contact area in the spherical part of the cutter is obtained using Z-map, and expressed by the grids on the cutter plane orthogonal to the cutter axis. New empirical cutting parameters were defined to describe the cutting force in the spherical part of cutter. Before the mean cutting force calculation, the cutting force density in each grid is calculated and saved to force map on the cutter plane. The mean cutting force in an arbitrary cutter contact area can be easily calculated by summing up the cutting force density of the engaged grid of the force map. The proposed method was verifed through the slotting and slanted surface machining with various inclination angles. It was shown that the mean force can be calculated fast and effectively through the proposed method for any geometry including sculptured surfaces with cusp marks and holes.

  • PDF

A Development of the Operating Speed Estimation Model of Truck on Four-lane Rural Highway (지방부 일반국도 4차로의 화물차 주행속도 예측모형 개발)

  • Park, Min Ho;Lee, Geun Hee
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.173-182
    • /
    • 2014
  • PURPOSES : The purpose of the study is to a) explore the operating speed of trucks on rural highways affected by road geometry, and thereby b) develop a predictive model for the operating speed of trucks on rural highways. METHODS : Considering that most of the existing studies have focused on cars, the current study aimed to predict the operating speed of trucks by conducting linear regression analysis on the speed data of trucks operating on the linear-curved-linear portions of the road as a single set. RESULTS : The operating speed in the plane curve portion increased with the length of the curve, and decreased with a lower vertical grade and a smaller curve radius. In the straight plane portion, the operating speed increased with a larger curve radius(upstream), and decreased with an increase in the change of the vertical grade, depending on the length of the vertical curve. CONCLUSIONS : This study developed estimation models of truck for operational speed and evaluated the degree of safety for horizontal and vertical alignments simultaneous. In order to represent whole area of the rural highway, the models should be ew-analyzed with vast data related with road alignment factor in the near future.

Seismic resistance of dry stone arches under in-plane seismic loading

  • Balic, Ivan;Zivaljic, Nikolina;Smoljanovic, Hrvoje;Trogrlic, Boris
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.243-257
    • /
    • 2016
  • The aim of this study is to investigate the seismic resistance of dry stone arches under in-plane seismic loading. For that purpose, several numerical analyses were performed using the combined finite-discrete element method (FDEM). Twelve types of arches with different ratios of a rise at the mid-span to the span, different thicknesses of stone blocks and different numbers of stone blocks in the arch were subjected to an incremental dynamic analysis based on excitation from three real horizontal and vertical ground motions. The minimum value of the failure peak ground acceleration that caused the collapse of the arch was adopted as a measure of the seismic resistance. In this study, the collapse mechanisms of each type of stone arch, as well as the influence of the geometry of stone blocks and stone arches on the seismic resistance of structures were observed. The conclusions obtained on the basis of the performed numerical analyses can be used as guidelines for the design of dry stone arches.

Guidance and Control System Design for Automatic Carrier Landing of a UAV (무인 항공기의 함상 자동 착륙을 위한 유도제어 시스템 설계)

  • Koo, Soyeon;Lee, Dongwoo;Kim, Kijoon;Ra, Chung-Gil;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1085-1091
    • /
    • 2014
  • This paper presents the guidance and control design for automatic carrier landing of a UAV (Unmanned Aerial Vehicle). Differently from automatic landing on a runway on the ground, the motion of a carrier deck is not fixed and affected by external factors such as ship movement and sea state. For this reason, robust guidance/control law is required for safe shipboard landing by taking the relative geometry between the UAV and the carrier deck into account. In this work, linear quadratic optimal controller and longitudinal/lateral trajectory tracking guidance algorithm are developed based on a linear UAV model. The feasibility of the proposed control scheme and guidance law for the carrier landing are verified via numerical simulations using X-Plane and Matlab/simulink.

The buckling of rectangular plates with opening using a polynomial method

  • Muhammad, T.;Singh, A.V.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.151-168
    • /
    • 2005
  • In this paper an energy method is presented for the linear buckling analysis of first order shear deformable plates. The displacement fields are defined in terms of the shape functions, which correspond to a set of predefined points and are composed of significantly high order polynomials. The locations of these points are found by mapping the geometry using the naturalized coordinates and bilinear shape functions. In order to evaluate the method, fully clamped and simply supported rectangular plates subjected to uniform uniaxial compressive loading on two opposite edges of the plate are investigated thoroughly and the results are compared with the exact solution given in the monograph of Timoshenko and Gere (1961). The method is extended to the analysis of perforated plates, wherein the negative stiffness computed over the opening area from in-plane and out-of-plane deformation modes is superimposed to the stiffness of the full plate. Numerical results are then favorably compared with those obtained by finite element methods. Other cases such as; rectangular plates with eccentrically located openings of different shapes are studied and reported in this paper with regards to the effect of aspect ratio, hole size, and hole position on the buckling. For a square plate with a large circular opening at the center, diameter being 80 percent of the length, the present method yields buckling coefficient 12.5 percent higher than the one from the FEM.

Analysis of Interfacial Surface Crack Perpendicular to the Surface (표면에 수직한 계면방향 표면균열의 해석)

  • 최성렬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.277-284
    • /
    • 1993
  • Interfacial surface crack perpendicular to the surface, which is imbedded into bonded quarter planes under single anti-plane shear load is analyzed. The problem is formulated using Mellin transform, form which single Wiener-Hopf equation is derived. By solving the equation stress intensity factor is obtained in closed form. This solution can be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.

Inverse kinematics of a Reclaimer: Redundancy and a Closed- Form Solution by Exploiting Geometric Constraints (원료불출기의 역기구학: 여유자유도와 구속조건을 이용한 닫힌 형태의 해)

  • Hong, K.S.;Kim, Y.M.;Shin, K.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.144-153
    • /
    • 1997
  • The inverse kinematics problem of a reclaimer which excavates and transports raw materials in a raw yard is investigated. Because of the geometric feature of the equipment in which scooping buckets are attached around the rotating disk, kinematic redundancy occurs in determining joint variable. Link coordinates are introduced following the Denavit-Hartenbery representation. For a given excavation point the forward kinematics yields 3 equations, however the number of involved joint variables in the equations is four. It is shown that the rotating disk at the end of the boom provides an extra passive degree of freedom. Two approaches are investigated in obtaining inverse kinematics solutions. The first method pre-assigns the height of excavation point which can be determined through path planning. A closed form solution is obtained for the first approach. The second method exploits the orthogonality between the normal vector at the excavation point and the z axis of the end-effector coordinate system. The geometry near the reclaiming point has been approximated as a plane, and the plane equation has been obtained by the least square method considering 8 adjacent points near the point. A closed form solution is not found for the second approach, however a linear approximate solution is provided.

  • PDF