• Title/Summary/Keyword: plane curvature

Search Result 236, Processing Time 0.025 seconds

Effects of the secondary flow on the turbulent heat transfer of a flat plate wake (2차유동이 평판후류의 난류열전달에 미치는 영향)

  • Kim, Hyeong-Su;Lee, Jun-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.417-427
    • /
    • 1998
  • The effect of secondary flow on the heat transfer of a turbulent wake generated by a flat plate was experimentally investigated. The secondary flow was induced in a curved duct in which the flat plate wake generator was installed. All three components of turbulent heat flux were measured in the plane containing the mean radius of curvature of the curved duct. The results showed that mean temperature profiles deviate from the similarity of the straight wake because of the cold fluid transported from the free-stream. The half-width of the mean temperature profile increased rapidly by upwash motion of the secondary flow. The changes to turbulence structure caused by the secondary flow show more pronounced effect on heat transport than on momentum transport. This is because the response to the variation of flow conditions is delayed in temperature field. Negative production of the turbulent heat flux is observed in the inner wake region. From the conditional averaging, it has been found that the negative production of the turbulent heat flux is generated due to a mixing process between the hot and low momentum eddies occupied in the inner wake region and the cold and high momentum eddies in the potential region.

Effect of 3D Printed Spiral Antenna Design on Inductive Coupling Wireless Power Transmission System (3차원 프린팅을 이용한 무선전력전송의 안테나 설계 특성 규명)

  • Kim, Ji-Sung;Park, Min-Kyu;Lee, Ho;Kim, Chiyen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.73-80
    • /
    • 2020
  • The 3D printing of electronics has been a major application topics in additive manufacturing technology for a decade. In this paper, wireless power transfer (WPT) technology for 3D electronics is studied to supply electric power to its inner circuit. The principle of WPT is that electric power is induced at the recipient antenna coil under an alternating magnetic field. Importantly, the efficiency of WPT does rely on the design of the antenna coil shape. In 3D printed electronics, a flat antenna that can be placed on the printed plane within a layer of a 3D printed part is used, but provided a different antenna response compared to that of a conventional PCB antenna for NFC. This paper investigates the WPT response characteristics of a WPT antenna for 3D printed electronics associated with changes in its design elements. The effects of changing the antenna curvature and the gap between the wires were analyzed through experimental tests.

Integrated Monitoring System of Maglev Guideway based on FBG Sensing System (FBG 센서 기반의 자기부상열차 통합 모니터링 시스템)

  • Chung, Won-Seok;Kang, Dong-Hoon;Yeo, In-Ho;Lee, Jun-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.761-765
    • /
    • 2008
  • This study presents an effective methodology on integrated monitoring system for a maglev guideway using WDM-based FBG sensors. The measuring quantities include both local and global quantities of the guideway response, such as stains, curvatures, and vertical deflections. The strains are directly measured from multiplexed FBG sensors at various locations of the test bridge followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the Bernoulli beam theory and regression analysis. Frequency contents obtained from the proposed method are compared with those from a conventional accelerometer. Verification tests were conducted on the newly-developed Korean Maglev test track. It has been shown that good agreement between the measured deflection and the estimated deflection is achieved. The difference between the two peak displacements was only 3.5% in maximum and the correlations between data from two sensing systems are overall very good. This confirms that the proposed technique is capable of tracing the dynamic behavior of the maglev guideway with an acceptable accuracy. Furthermore, it is expected that the proposed scheme provides an effective tool for monitoring the behavior of the maglev guideway structures without electro magnetic interference.

  • PDF

Extended Adaptively Sampled Distance Fields Method for Rendering Implicit Surfaces with Sharp Features (음함수 곡면의 날카로운 형상 가시화를 위한 확장 Adaptively Sampled Distance Fields 방법)

  • Cha J.H.;Lee K.Y.;Kim T.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.27-39
    • /
    • 2005
  • Implicit surfaces are geometric shapes which are defined by implicit functions and exist in three-dimensional space. Recently, implicit surfaces have received much attention in solid modeling applications because they are easy to represent the location of points and to use boolean operations. However, it is difficult to chart points on implicit surfaces for rendering. As efficient rendering method of implicit surfaces, the original Adaptively Sampled Distance Fields (ADFs) $method^{[1]}$ is to use sampled distance fields which subdivide the three dimensional space of implicit surfaces into many cells with high sampling rates in regions where the distance field contains fine detail and low sampling rates where the field varies smoothly. In this paper, in order to maintain the sharp features efficiently with small number of cells, an extended ADFs method is proposed, applying the Dual/Primal mesh optimization $method^{[2]}$ to the original ADFs method. The Dual/Primal mesh optimization method maintains sharp features, moving the vertices to tangent plane of implicit surfaces and reconstructing the vertices by applying a curvature-weighted factor. The proposed extended ADFs method is applied to several examples of implicit surfaces to evaluate the efficiency of the rendering performance.

A Study on Lane Sensing System Using Stereo Vision Sensors (스테레오 비전센서를 이용한 차선감지 시스템 연구)

  • Huh, Kun-Soo;Park, Jae-Sik;Rhee, Kwang-Woon;Park, Jae-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.230-237
    • /
    • 2004
  • Lane Sensing techniques based on vision sensors are regarded promising because they require little infrastructure on the highway except clear lane markers. However, they require more intelligent processing algorithms in vehicles to generate the previewed roadway from the vision images. In this paper, a lane sensing algorithm using vision sensors is developed to improve the sensing robustness. The parallel stereo-camera is utilized to regenerate the 3-dimensional road geometry. The lane geometry models are derived such that their parameters represent the road curvature, lateral offset and heading angle, respectively. The parameters of the lane geometry models are estimated by the Kalman filter and utilized to reconstruct the lane geometry in the global coordinate. The inverse perspective mapping from the image plane to the global coordinate considers roll and pitch motions of a vehicle so that the mapping error is minimized during acceleration, braking or steering. The proposed sensing system has been built and implemented on a 1/10-scale model car.

A study on the elastic-plastic analysis and fracture behavior of pressure vessel (내외압을 받는 압력용기의 탄소성 해석과 파괴거동에 대한 고찰)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.19-29
    • /
    • 1988
  • This paper reports on the elatic-plastic analysis and fracture behavior of cylinder with outer surface crack which is under external or internal pressure. For the studuty of crack length effects in cylinder, ratios of crack lengths to finite thickness (a/t) are dertermined 0.3, 0.4, 0.5. For the study of curvature effects in cylinders, ratios of mean diameter to finite thicknees (Rm/t) are determined 10.0, 15.0, 20.0. Analysis is conduceted using the theory of fracture mechanics and two dimensional finite element solution assuming the axi-symmetrical plane strain conditon. Main results of this study are as follows. 1) It is known from this paper that elastic-plastic strain is initiated near crack tip and enlarged between crack tip and inner side of cylinder. 2) $K_{1}$ of cylinder under external or internal pressure is evaluated memebrane stress .root..pi.* crack length. The results of this study are inclined to Lomacky's results and Kobayshi's result. 3) Distribution of stress near crack tip is looked higher than of other zone, as crack length of equal model is longer, and as diameter of cylinder is longer. 4) When other conditions are equal, displacemenet near crack tip is looked duller, as length is longer.

  • PDF

A Study of f-${\theta}$ Lens Design for Axisymmetric Spherical Surface for RGB Laser Display and its applications (RGB 레이저 가시화를 위한 축대칭 구면 f-${\theta}$ 렌즈 설계 및 프로젝션응용)

  • Lee, Y.M.;Choi, H.W.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.24-29
    • /
    • 2011
  • The design of a telecentric f-${\theta}$ lens with a field of view (FOV) $30^{\circ}$ and an effective focal length of 1000mm is presented. The optical stop is placed at the front plane and the design is based on a geometric ray tracing technique, and the designed system consists of a series of convex and concave lenses. The designed f-${\theta}$ lens showed a considerable reduction in weight with a simplified structure and resulted in a good performance in the designated FOV. Detail analysis of rays is also presented. 653nm (red laser), 586nm (green laser), and 468nm (blue laser) were simulated as a light source and image illuminating source. The developed optical design requires 7 pieces of lenses made of SF1, N-FK56, N-LAK33, and BK7 glass materials. With optimal parametric design, the effective focal length was calculated to be 974.839mm which is very close to the initial design target. For the manufacturing purpose, the dimensions of lens curvature and thickness were truncated with error ranging 0.1% to 3.2%. As a result, the overall error was calculated to be 3.2% which can be still tolerable for display, laser material, and machining processing.

  • PDF

Image analysis using the weak derivative (약미분을 이용한 영상분석)

  • Kim Tae-Sik
    • Journal of Digital Contents Society
    • /
    • v.5 no.4
    • /
    • pp.289-294
    • /
    • 2004
  • For the purpose of image analysis, we usually take the application method relying on the various mathematical theories. On the respect of image as two variable function one may uses the gradient vector or several type of energy functions induced by the conventional (partial) derivative. We also have used the tangent plane or curvature vector from the concept of differential geometry {**]. However, these mathematical tools my assume that the given function should be sufficiently smoothing enough to depict every local variation continuously. But the real application of these mathematical methods to the natural images or phenomena may occur the ill-posed problem. In this paper, we have defined the weak derivative as a loose form of the derivative so that it my applied to the irregular case with less ill-posed problem.

  • PDF

A study on an oblique impinging jet (경사충돌분류에 관한 연구)

  • 조용철;김광용;박상규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.716-724
    • /
    • 1990
  • Oblique impinging plane jets were investigated experimentally and numerically at Reynolds number 21000. The inclination angle was varied from 90.deg.(normal to the impinging plate) to 60.deg.. The distance H between the nozzle exit and the stagnation point on the impinging plate was fixed at H/D=8. The working fluid was air. The mean velocity components and turbulent quantities were measured by a hot-wire anemometer. And the static pressure distributions on the impinging plate were measured by a Pitot tube. In numerical computation, the governing partial differential equations of elliptic type were solved with conventional k-.epsilon. turbulence model. The measurements show that, after impingement, the jet half width alone the wall increases in both directions, and that similarity for each turbulent quantity such as Reynolds shear stress or turbulent kinetic energy is revealed in the wall jet region. The computed results show some deviation from experimental data in the impingement region, where streamline curvature is significant. However, the computed results agree qualitatively well with measurements.

Construction of Branching Surface from 2-D Contours

  • Jha, Kailash
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • In the present work, an attempt has been made to construct branching surface from 2-D contours, which are given at different layers and may have branches. If a layer having more than one contour and corresponds to contour at adjacent layers, then it is termed as branching problem and approximated by adding additional points in between the layers. Firstly, the branching problem is converted to single contour case in which there is no branching at any layer and the final branching surface is obtained by skinning. Contours are constructed from the given input points at different layers by energy-based B-Spline approximation. 3-D curves are constructed after adding additional points into the contour points for all the layers having branching problem by using energy-based B-Spline formulation. Final 3-D surface is obtained by skinning 3-D curves and 2-D contours. There are three types of branching problems: (a) One-to-one, (b) One-to-many and (c) Many-to-many. Oneto-one problem has been done by plethora of researchers based on minimizations of twist and curvature and different tiling techniques. One-to-many problem is the one in which at least one plane must have more than one contour and have correspondence with the contour at adjacent layers. Many-to-many problem is stated as m contours at i-th layer and n contours at (i+1)th layer. This problem can be solved by combining one-to-many branching methodology. Branching problem is very important in CAD, medical imaging and geographical information system(GIS).