• 제목/요약/키워드: planar motors

Search Result 29, Processing Time 0.028 seconds

Design of Linear XY Stage using Planar Configuration and Linear Motors with Halbach Magnet Array (평면형 구조와 Halbach 자석배열 선형모터를 이용한 리니어 XY 스테이지의 설계)

  • Kim, Ki-Hyun;Lee, Moon-G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.553-561
    • /
    • 2010
  • In flat panel display or semiconductor industries, they install the equipments with fine line width and high throughput for fabrication and inspection. The equipments are required to have the linear stage which can position the work-piece with high speed, fine resolution on wide range of motion. In this paper, a precision planar linear XY stage is proposed. The stage has a symmetric planar window configuration and is guided by air-bearings on granite plate. The symmetric planar window configuration makes the stage has robustness against dynamic and thermal disturbances. The air-bearings let the stage move smooth on straight guide bar and flat granite surface. The stage is actuated by linear motor with Halbach magnet array (HMA). HMA generates more confined magnetic flux than conventional array. The linear motors are optimized by using sequential quadratic programming (SQP) with the several constraints that are thermal dissipation, required power, force ripple and so on. The planar linear XY stage with the symmetric planar configuration and the linear motors is implemented and then the performance such as force ripple, resolution and stroke are evaluated.

Improvement of Dynamic Characteristic of Large-Areal Planar Stage Using Induction Principle (인덕션 방식을 이용한 평면 스테이지의 동특성 개선)

  • Jung, Kwang-Suk;Park, Jun-Kyu;Kim, Hyo-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.675-682
    • /
    • 2009
  • Instead of direct driving like BLDC, the induction principle is adopted as a driving one for planar stage. The stage composed of four linear induction motors put in square type is activated by two-axial forces; low-frequency attractive force and thrust force of the linear induction motors. Here, the modified vector control whose new inputs are q-axis current and dc current biased to three phase current instead of d-axis current or flux current is applied extensively to overall motion of the stage. For the developed system, the precision step test and the constant velocity test are tried to guarantee its feasibility for TFT-LCD pattern inspection. However, to exclude a discontinuity due to phase shift and minimize a force ripple synchronized with the command frequency, the initial system is revised to the antagonistic structure over the full degree of freedom. Concretely describing, the porous air bearings guide an air-gapping of the stage up and down and a pair of liner induction motors instead of single motor are activated in the opposite direction each other. The performances of the above systems are compared from trapezoid tracking test and sinusoidal test.

Study on the Air-bearing Stage Driven by Linear Induction Motors (선형 유도기 구동 방식 공기 베어링 스테이지에 관한 연구)

  • Jung, Kwang-Suk;Shim, Ki-Bon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.39-46
    • /
    • 2010
  • Linear induction motor is adopted as an actuator of the planar stage. An inherently poor characteristic at zero or ultra-low speed zone of the induction motor is remarkably improved due to a recent development of power electronic semiconductor technology and a spatial vector control theory. At present, a servo response speed of the induction motor reaches 90 percent of one of PM synchronous or BLDC motor. Specially, as a secondary of the induction motor can be constructed using uniform conducting sheets, there is no periodic force ripple as in PM motors. So, the induction motor can be superior to another driving means under a certain condition. This paper discusses the overall development procedure of non-contact planar stage with a big workspace using linear induction motors.

A Implementation of Distributed Microsystem for DC Servo using uC/OS-II (uC/OS-II를 이용한 DC 모터의 실시간 분산 시스템 제어)

  • Lee, Youn-Hee;Kim, Tae-Kang;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2415-2417
    • /
    • 2002
  • In this paper, we discuss about the real-time distributed system for the control of to motors using uCOS-II kernel. Real-time kernel needs to process the tasks for two motors in desired time to synchronize motion. We used both semaphore and message mail box for synchronization. In the previous study, we used step motors for the actuator of two axes robot, but could not draw a clear line because of motor resolution and synchronizing step pulse. To resolve the problem we rebuilt the transfer robot with DC motors and the dedicated position servor which had built in out lab. Moreover we developed the PC based graphic user interface for generating planar drawing image control. Experimental results also presented to show the proposed control system is useful.

  • PDF

Active Vibration Control of a Planar Parallel Manipulator using Piezoelectric Materials (압전소자를 이용한 수평 병렬형 머니풀레이터의 능동 진동 제어)

  • 강봉수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2003
  • This paper presents a new approach for the use of smart materials, piezoelectric materials of PVDF and PZT, for vibration attenuation of a planar parallel manipulator. Since lightweight linkages of parallel manipulators deform under high acceleration/deceleration, an active damper is needed to attenuate vibration due to structural flexibility of linkages. Based on the dynamic model of a planar parallel manipulator, an active damping controller is developed, which consists of a PD feedback control scheme, applied to linear electrical motors, and a linear velocity feedback (L-type) scheme applied to either PVDF layer or PZT actuator(5). Simulation results show that piezoelectric materials yield good damping performance, resulting in precise manipulations of a planar parallel manipulator.

Distributed Control of a Two Axis Convey Table Using Real-time Micro-Kernel (마이크로 커널을 이용한 2축 반송 테이블의 분산제어)

  • 이건영
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.182-187
    • /
    • 2004
  • In this paper, we propose a PC based distributed controller for a two axis convey table using real-time micro-kernel. PC, Windows program, gives an easy way to implement wealthy GUI and micro-kernel, ${\mu}$C/OS-II, provides a real-time capability to control devices. We built a real-time distributed control system using ${\mu}$C/OS-II kernel which needs to process the tasks for two motors within the desired time to synchronize the motion. We used both semaphore and message mail box for synchronization. Unlike the previous study where we used step motors for the actuator of two axes convey table, we rebuilt the convey table with DC motors and the dedicated position servo which had built in out lab, and then we implemented a realtime distributed control system by putting the micro-kernel into between PC and position servo. Moreover we developed the PC based graphic user interfaces for generating planar drawing image control. Experimental results also presented to show the Proposed control system is useful.

Simplified Nonlinear Control for Planar Motor based on Singular Perturbation Theory (특이섭동이론을 기반으로한 평판모터의 비선형 제어)

  • Seo, HyungDuk;Shin, Donghoon;Lee, Youngwoo;Chung, Chung Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.289-296
    • /
    • 2015
  • In this paper, we propose the nonlinear control based on singular perturbation theory for position tracking and yaw regulation of planar motor. Singular perturbation theory is characterized by the existence of slow and fast transients in the system dynamics. The proposed method consists of auxiliary control to decouple error dynamics. We develop model reduction with control input. Also, we derIve decoupled error dynamics with auxiliary input. The controller is designed in order to guarantee the desired position and yaw regulation without current feedback or estimation. Simulation results validate the effect of proposed method.

Design Optimization of Planar 3-DOF Parallel Manipulator for Alignment of Micro-Components (마이크로 부품 조립을 위한 평면 3 자유도 병렬 정렬기의 최적설계)

  • Lee, Jeong-Jae;Song, Jun-Yeob;Lee, Moon-G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.322-328
    • /
    • 2011
  • This paper presents inverse kinematics and workspace analysis of a planar three degree-of-freedom (DOF) parallel manipulator. Furthermore, optimization problem of the manipulator is presented. The manipulator adopts PRR (Prismatic-Revolute-Revolute) mechanism and the prismatic actuators are fixed to the base. This leads to a reduction of the inertia of the moving links and hence enables it to move with high speed. The actuators are linear electric motors. First, the mechanism based on the geometry of the manipulator is introduced. Second, a workspace analysis is performed. Finally, design optimization is carried out to have large workspace. The proposed approach can be applied to the design optimization of various three DOF parallel manipulators in order to maximize their workspace. The performance of mechanism is improved and satisfies the requirements of workspace to align micro-components.

Deposition and evaluation of MoNx films deposited by magnetron sputtering

  • Ma, Yajun;Li, Shenghua;Jin, Yuansheng;Pan, Guoshun;Wang, Yucong;Tung, Simon C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.135-136
    • /
    • 2002
  • Molybdenum Nitrided (MoNx) films were deposited by DC planar magnetron sputtering. Silicon wafers and real nitrided stainless steel piston rings are employed as substrates. 12 different combinations of nitrogen and argon partial pressure, from 1:7 to 7:1, were applied to deposit MoNx films. X-ray diffraction (XRD) was used to determine the phase structures of films. When nitrogen vs. argon partial pressure is 1:7, the film is mainly $Mo_2N$ phase. With increase of nitrogen partial pressure, MoN phase emerges, but $Mo_2N$ phase still exists. Composition analysis with atomic emission spectrometry (AES) also agreed with this. The films have very high nanohardness (max 2400Hv) and good adhesion to the substrates.

  • PDF