• Title/Summary/Keyword: planar motion mechanism

Search Result 68, Processing Time 0.028 seconds

Spring Connected Size-Variable Rigid Block Model for Automatic Synthesis of a Planar Linkage Mechanism (평면 링크기구 자동 설계를 위한 스프링 연결 사이즈 가변 블록 모델)

  • Kim, Bum-Suk;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.822-826
    • /
    • 2008
  • A linkage mechanism is a device to convert an input motion into a desired output motion. Traditional linkage mechanism designs are based on trial and error approaches so that size or shape changes of an original mechanism often result in improper results. In order to resolve these problems, an improved automatic mechanism synthesis method that determines the linkage type and dimensions by using an optimization method during the synthesis process has been proposed. For the synthesis, a planar linkage is modeled as a set of rigid blocks connected by zero-length translational springs with variable stiffness. In this study, the sizes of rigid blocks were also treated as design variables for more general linkage synthesis. The values of spring stiffness and the size of rigid block yielding a desired output motion at the end-effecter are found by using an optimization method.

  • PDF

Development of Modulated Planar Cam-Linkage Mechanism Design Software (평면 캠-링크 복합 기구용 설계 소프트웨어 개발)

  • Yang, Hyun-Ik;Yu, Ho-Yune
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.125-131
    • /
    • 1999
  • For linkage mechanisms driven by a cam, cam profile is the major design factor and is determined by the cam follower motion. If a cam mechanism has additional kinematic linkage besides cam and follower then the follower motion should be specified from the motion of end linkage member so that cam would be able to generate the desired end linkage motion. In this paper, a cam-linkage mechanism is constructed with the combinations of modular linkage elements including cam and follower and as a result, a planar cam-linkage mechanism design software with the cam profile optimization function is developed and presented.

  • PDF

Evaluation of the added mass for a spheroid-type unmanned underwater vehicle by vertical planar motion mechanism test

  • Lee, Seong-Keon;Joung, Tae-Hwan;Cheon, Se-Jong;Jang, Taek-Soo;Lee, Jeong-Hee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.174-180
    • /
    • 2011
  • This paper shows added mass and inertia can be acquired from the pure heaving motion and pure pitching motion respectively. A Vertical Planar Motion Mechanism (VPMM) test for the spheroid-type Unmanned Underwater Vehicle (UUV) was compared with a theoretical calculation and Computational Fluid Dynamics (CFD) analysis in this paper. The VPMM test has been carried out at a towing tank with specially manufactured equipment. The linear equations of motion on the vertical plane were considered for theoretical calculation, and CFD results were obtained by commercial CFD package. The VPMM test results show good agreement with theoretical calculations and the CFD results, so that the applicability of the VPMM equipment for an underwater vehicle can be verified with a sufficient accuracy.

평면 캠-링크 기구의 설계 소프트웨어 개발

  • 양현익;유호윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.788-793
    • /
    • 1995
  • For a linkage mechanism deiven by cam, cam profile is the major design factor and is determined by the motion type od cam follower. If a cam mechanism has additional kinematic linkages besides cam and follower then the follower motion should be specified form the motion of end linkage member so that cam would be able to generate the desired end linkage motion. In this paper, a cam-linkage mechanism is constructed with the combinations of modular linkage elements including cam and follower and as a resullt, a planar cam-linkage mechanism design software with the cam profile optimization function is developed and presented.

  • PDF

Experimental Study on Hydrodynamic Coefficients of Autonomous Underwater Glider Using Vertical Planar Motion Mechanism Test (VPMM 시험을 통한 무인 수중 글라이더 모형의 동유체력 계수 추정에 관한 연구)

  • Jung, Jin-Woo;Jeong, Jae-Hun;Kim, In-Gyu;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • A vertical planar motion mechanism(VPMM) test was used to increase the prediction accuracy for the maneuverability of an underwater glider model. To improve the accuracy of the linear hydrodynamic coefficients, the analysis techniques of a pure heave test and pure pitch test were developed and confirmed. In this study, the added mass and damping coefficient were measured using a VPMM test. The VPMM equipment provided pure heaving and pitching motions to the underwater glider model and acquired the forces and moments using load cells. As a result, the hydrodynamic coefficients of the underwater glider could be acquired after a Fourier analysis of the forces and moments. Finally, a motion control simulation was performed for the glider control system, and the results are presented.

Estimation of Hydrodynamic Derivatives of Submarine Model by Using VPMM Test (VPMM 시험을 이용한 잠수함 모형의 유체력 미계수 추정)

  • Jung, Jin-Woo;Jeong, Jae-Hun;Kim, In-Gyu;Lee, Seung-Keon
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.97-103
    • /
    • 2014
  • In these days, the world has been increasing navy forces such as aircraft carriers and high-tech destroyers etc. and the importance of submarines is being emphasized. Therefore, accurate values of the derivatives in equations of motion are required to control motion of the submarines. Hydrodynamic derivatives were measured by the vertical planar motion mechanism(VPMM) model test. VPMM equipment gave pure heave and pitch motion respectively to the submarine model and the forces and moments were acquired by load cells. As a result, the hydrodynamic derivatives of the submarine are provided through the Fourier analysis of the forces and moments in this paper.

Planar Motion Mechanism Test of the Mobile Harbor Running in Design Speed in Circulating Water Channel

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.525-532
    • /
    • 2010
  • Mobile Harbor (MH) is a new transportation platform that can load and unload containers onto and from very large container ships at sea. It could navigate near harbors where several vessels run, or it could navigate through very narrow channels. In the conceptual design phase when the candidate design changes frequently according to the various performance requirements, it is very expensive and time-consuming to carry out model tests using a large model in a large towing tank and a free-running model test in a large maneuvering basin. In this paper, a new Planar Motion Mechanism(PMM) test in a Circulating Water Channel (CWC) was conducted in order to determine the hydrodynamic coefficients of the MH. To do this, PMM devices including three-component load cells and inertia tare device were designed and manufactured, and various tests of the MH such as static drift test, pure sway test, pure yaw test, and drift-and-yaw combined test were carried out. Using those coefficients, course-keeping stability was analyzed. In addition, the PMM tests results carried out for the same KCS (KRISO container ship) were compared with our results in order to confirm the test validity.

Maneuvering simulation of an X-plane submarine using computational fluid dynamics

  • Cho, Yong Jae;Seok, Woochan;Cheon, Ki-Hyeon;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.843-855
    • /
    • 2020
  • X-plane submarines show better maneuverability as they have much longer span of control plane than that of cross plane submarines. In this study, captive model tests were conducted to evaluate the maneuverability of an X-plane submarine using Computational Fluid Dynamics (CFD) and a mathematical maneuvering model. For CFD analysis, SNUFOAM, CFD software specialized in naval hydrodynamics based on the open-source toolkit, OpenFOAM, was applied. A generic submarine Joubert BB2 was selected as a test model, which was modified by Maritime Research Institute Netherlands (MARIN). Captive model tests including propeller open water, resistance, self-propulsion, static drift, horizontal planar motion mechanism and vertical planar motion mechanism tests were carried out to obtain maneuvering coefficients of the submarine. Maneuvering simulations for turning circle tests were performed using the maneuvering coefficients obtained from the captive model tests. The simulated trajectory showed good agreement with that of free running model tests. From the results, it was proved that CFD simulations can be applicable to obtain reliable maneuvering coefficients for X-plane submarines.

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

  • Joung, Tae-Hwan;Choi, Hyeung-Sik;Jung, Sang-Ki;Sammut, Karl;He, Fangpo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.269-281
    • /
    • 2014
  • This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYS-CFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.

Study on the Estimation of Autonomous Underwater Vehicle's Maneuverability Using Vertical Planar Motion Mechanism Test in Self-Propelled Condition (자항상태 VPMM 시험을 통한 무인잠수정 조종성능 추정에 관한 연구)

  • Park, Jongyeol;Rhee, Shin Hyung;Lee, Sungsu;Yoon, Hyeon Kyu;Seo, Jeonghwa;Lee, Phil-Yeob;Kim, Ho Sung;Lee, Hansol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The present study aims to improve the accuracy of the maneuvering simulations based on captive model test results. To derive the hydrodynamic coefficients in a self-propelled condition, a mathematical maneuvering model using a whole vehicle model was established. Captive model tests were carried out using the Vertical Planar Motion Mechanism (VPMM) equipment. A motor controller was used to control the constant propeller revolution rate during pure motion tests. The resistance tests, self-propulsion tests, static drift tests, and VPMM tests were performed in the towing tank of Seoul National University. When the vertical drift angle changes, the gravity load on the sensors were changed. The hydrodynamic forces were deduced by subtracting the gravity load from the measured forces. The hydrodynamic coefficients were calculated using the least-square method. The simulation of the turning circle test was compared with the free-running model test result, and the error of the turning radius was 8.3 % compared to the free-running model test.