• Title/Summary/Keyword: planar microchip

Search Result 3, Processing Time 0.016 seconds

Single Magnetic Bead Detection in a Microfluidic Chip Using Planar Hall Effect Sensor

  • Kim, Hyuntai;Reddy, Venu;Kim, Kun Woo;Jeong, Ilgyo;Hu, Xing Hao;Kim, CheolGi
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.10-14
    • /
    • 2014
  • In this study, we fabricate an integrated microfluidic chip with a planar Hall effect (PHE) sensor for single magnetic bead detection. The PHE sensor was constructed with a junction size of $10{\mu}m{\times}10{\mu}m$ using a trilayer structure of Ta(3 nm)/NiFe(10 nm)/Cu(1.2 nm)/IrMn(10 nm)/Ta(3 nm). The sensitivity of the PHE sensor was 19.86 ${\mu}V/Oe$. A diameter of 8.18 ${\mu}m$ magnetic beads was used, of which the saturation magnetization was ~2.1 emu/g. The magnetic susceptibility ${\chi}$ of these magnetic beads was calculated to be ~0.14. The diluted magnetic beads solution was introduced to the microfluidic channel attributing a single bead flow and simultaneously the PHE sensor voltage was measured to be 0.35 ${\mu}V$. The integrated microchip was able to detect a magnetic moment of $1.98{\times}10^{-10}$ emu.

Planar microchip-based lactate biosensor (평면 소자형 락테이트 바이오센서)

  • Ha, Jeonghan;Huh, Hwang;Kang, Tae Young;Lee, Yong Seok;Yoon, Soon Ho;Shin, Jungwon;Nam, Hakhyun;Cha, Geun Sig
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.482-489
    • /
    • 2006
  • Two electrode-based lactate biosensor was prepared by immobilizing lactate oxidase (LOD) obtained from pediococcus species in a poly(vinyl alcohol). Hydrogen peroxide ($H_2O_2$) produced by the reaction of lactate and LOD was detected on the Pt-black that was electrochemically deposited on the Au electrode. Sensors fabricated with Pt-black deposited Au electrode provided a high current of $H_2O_2$ oxidation at a substantially lowered applied potential (+300 mV vs. Ag/AgCl), resulting in reduced interferences from easily oxidizable species such as ascorbic acid, acetaminophen, and uric acid. An outer membrane is formulated by adjusting water uptake of hydrophilic polyurethane (HPU). The sensor performance was evaluated in vitro with both flow-through arrangement and static mode. The sensor showed a linear range from 0.1 mM to about 9.0 mM in 0.05 M phosphate buffer (pH 7.6) containing 0.05 M NaCl. Storing the sensors prepared in this work at $4^{\circ}C$ buffer solution while not in use, they provided same electrochemical performance for more than 25 days.

Application to Stabilizing Control of Nonlinear Mobile Inverted Pendulum Using Sliding Mode Technique

  • Choi, Nak-Soon;Kang, Ming-Tao;Kim, Hak-Kyeong;Park, Sang-Yong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • This paper presents a sliding mode controller based on Ackermann's formula and applies it to stabilizing a two-wheeled mobile inverted pendulum in equilibrium. The mobile inverted pendulum is a system with an inverted pendulum on a mobile cart. The dynamic modeling of the mobile inverted pendulum was established under the assumptions of a cart with no slip and a pendulum with only planar motion. The proposed sliding mode controller was based upon a class of nonlinear systems whose nonlinear part of the modeling can be linearly parameterized. The sliding surface was obtained in an explicit form using Ackermann's formula, and then a control law was designed from reachability conditions and made the sliding surface attractive to the equilibrium state of the mobile inverted pendulum. The proposed controller was implemented in a Microchip PIC16F877 micro-controller. The developed overall control system is described. The simulation and experimental results are presented to show the effectiveness of the modeling and controller.