• Title/Summary/Keyword: planar features

Search Result 91, Processing Time 0.034 seconds

Influence of the Anastomosis Angle Variation on Flow Features and Wall Shear Stress of an Artery (관상동맥 우회로 관의 문합각도의 변화가 유동과 벽 전단력에 미치는 영향)

  • Kim H. M.
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.34-40
    • /
    • 2004
  • It is known that the non-planar model of bypass is more profitable to suppress the development of intimal hyperplasia that tends to occur preferentially in regions of low time averaged shear stress and rapid temporal changes in wall shear stress. In this study it was numerically simulated the blood flow in an coronary artery grafted by artificial bypass to determine the flow characteristic variations due to the anastomosis angle changing. 5 different non-planar anastomosis angle models such as 45°, 60°, 90°, 120° and 135° were considered. When the anastomosis angle is higher, the backward flow region is spatially extended near the downstream region of the anastomosis because of the development of horseshoes vortex. For the case of the nan-planar 45° and 60° of anastomosis, the area of low-OSI zone was decreased by 26% and 13% respectively and the time averaged wall shear stress was increased by more than 55% as compared with 45° of planar model. However, both of the area of the low-OSI zone and the time averaged wall shear stress of 90°, 120° model were significantly increased.

AUTOMATIC SCALE DETECTION BASED ON DIFFERENCE OF CURVATURE

  • Kawamura, Kei;Ishii, Daisuke;Watanabe, Hiroshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.482-486
    • /
    • 2009
  • Scale-invariant feature is an effective method for retrieving and classifying images. In this study, we analyze a scale-invariant planar curve features for developing 2D shapes. Scale-space filtering is used to determine contour structures on different scales. However, it is difficult to track significant points on different scales. In mathematics, curvature is considered to be fundamental feature of a planar curve. However, the curvature of a digitized planar curve depends on a scale. Therefore, automatic scale detection for curvature analysis is required for practical use. We propose a technique for achieving automatic scale detection based on difference of curvature. Once the curvature values are normalized with regard to the scale, we can calculate difference in the curvature values for different scales. Further, an appropriate scale and its position are detected simultaneously, thereby avoiding tracking problem. Appropriate scales and their positions can be detected with high accuracy. An advantage of the proposed method is that the detected significant points do not need to be located in the same contour. The validity of the proposed method is confirmed by experimental results.

  • PDF

Whether Pinhole Scan or Single Photon Emission Computed Tomography (SPECT) in the Diagnosis of Bone and Joint Diseases (골격계진단에 있어서 핀홀스캔의 우월성)

  • Bahk, Yong-Whee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • Since the publication of the first bone scintiscans in 1962 three decades have elapsed. The bone scan has made great strides during this period, becoming one of the most commonly used nuclear imaging tests. In spite of the progress, however, the specificity of bone scan has remained relatively low. As the result it is a common practice to seek additional information from radiograph, CT scan and MR image, which is euphemistically termed as "image fusion or co-location." The basic reason is the inapplicability of the classical piecemeal analysis to interpreting planar and SPECT bone scans. Such analysis has its base on the observation of elemental features of morphology, which include the size, shape, contour, location, topography and internal architecture. The physiochemical profile may well also be included. Understandably, however, the miniatured images of the planar bone scan cannot provide these features in acceptable detail and the same holds true even with SPECT Images which are but sliced views of the reconstructed planar scans. Fortunately pinhole scanning has the capacity to portray both the morphological and chemical profiles of bone and joint diseases in greater detail through true magnification. The magnitude of pinhole scan resolution is practically comparable to that of radiography as far as gross anatomy is concerned. Thus, we feel strongly that pinhole scanning is a potential breakthrough of the long-lamented low specificity of bone scan. This presentation will discuss the fun-damentals, advantages and disadvantages and the most recent advances of pinhole scanning. It high-lights the actual clinical applications of pinhole scanning in relation to the diagnosis of infective and inflammatory diseases of bone and joint.

  • PDF

Structural Optimization of Planar Truss using Quantum-inspired Evolution Algorithm (양자기반 진화알고리즘을 이용한 평면 트러스의 구조최적화)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • With the development of quantum computer, the development of the quantum-inspired search method applying the features of quantum mechanics and its application to engineering problems have emerged as one of the most interesting research topics. This algorithm stores information by using quantum-bit superposed basically by zero and one and approaches optional values through the quantum-gate operation. In this process, it can easily keep the balance between the two features of exploration and exploitation, and continually accumulates evolutionary information. This makes it differentiated from the existing search methods and estimated as a new algorithm as well. Thus, this study is to suggest a new minimum weight design technique by applying quantum-inspired search method into structural optimization of planar truss. In its mathematical model for optimum design, cost function is minimum weight and constraint function consists of the displacement and stress. To trace the accumulative process and gathering process of evolutionary information, the examples of 10-bar planar truss and 17-bar planar truss are chosen as the numerical examples, and their results are analyzed. The result of the structural optimized design in the numerical examples shows it has better result in minimum weight design, compared to those of the other existing search methods. It is also observed that more accurate optional values can be acquired as the result by accumulating evolutionary information. Besides, terminal condition is easily caught by representing Quantum-bit in probability.

Micromagnetic Computer Simulation of Ultra-high density Recording with the Use of a Planar-type Head

  • S.H. Lim;Kim, H.J.
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.109-118
    • /
    • 2001
  • A computer simulation, utilizing the Landau-Lifshitz-Gilbert equation, of ultra-high- density recording on continuous longitudinal media is carried out. The two important features of this work are the use of a planar-type head, which enables a high write field of 14183 Oe ts be generated at the center of the recording medium, and the media with very high coercivities up to 13010 Oe. From a systematic investigation, it is found that the optimum write field is higher than the medium coercivity by only 3400 Oe over a wide coercivity range. This new finding allows one to write an a medium with a very high coercivity by using a planar-type head. It is demonstrated that a reasonably good bit pattern with a bit density of 605 kfci is generated on the medium with a coercivity of l1720 Oe, and, combined with a high track pitch density of 100 ktpi, a recording density of 60 Gb/in$^2$can be obtained in a single layer medium. With an improved write- head designs even a higher recording density of 75 Gb/in$^2$may be possible since comparison of the results for the bit pattern from the present head profile and the ideal Lindholm profile indicates an increase in the track pitch density of about 27%. Even at this density, the thermal stability parameter (KV/kT) at room temperature is high enough (60) to provide ample room for thermal stability.

  • PDF

Fuzzy Mean Method with Bispectral Features for Robust 2D Shape Classification

  • Woo, Young-Woon;Han, Soo-Whan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.313-320
    • /
    • 1999
  • In this paper, a translation, rotation and scale invariant system for the classification of closed 2D images using the bispectrum of a contour sequence and the weighted fuzzy mean method is derived and compared with the classification process using one of the competitive neural algorithm, called a LVQ(Learning Vector Quantization). The bispectrun based on third order cumulants is applied to the contour sequences of the images to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images and are fed into an classifier using weighted fuzzy mean method. The experimental processes with eight different shapes of aircraft images are presented to illustrate the high performance of the proposed classifier.

  • PDF

A method of extracting edge line from range image using recognition features (거리 영상에서 인식 특정을 이용한 경계선 검출 기법)

  • 이강호
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.2
    • /
    • pp.14-19
    • /
    • 2001
  • This paper presents a new method of 3-D surface feature extraction using a quadratic pol expression. With a range image, we get an edge map through the modified scan line technique this edge map, we label a 3-dimensional object to divide object's region and extract cent corner points from it's region. Then we determine whether the segmented region is a planar or a curved from the quadric surface equation. we calculate the coefficients of the planar su the curved surface to represent regions. In this article. we prove performance of the metho synthetic and real (Odetics) range images.

Fabrication of Ni master for the replication of planar optical devices by LIGA process (LIGA 공정을 이용한 평면형 광소자용 Ni 마스터 제작)

  • Kim, Jin-Tae;Jeong, Myung-Yung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.945-949
    • /
    • 2003
  • LIGA(Lithographie Galvanoformung Abformung), a fabrication method for the production of microstructrues with a high aspect ratio, is now playing an important role in a fabrication of polymeric optical waveguide device as the replication processes have been developed such as hot embossing and injection molding. The present report deals with the fabrication of Ni master used for the replication of multi-mode polymeric optical waveguide. With the basic technological features in the sequence of the LIGA technique, we fabricated Ni master with 12 channel microstructures of $100\;{\times}\;100{\mu}m\;^2{\times}\;60mm$, and achieved an accuracy of ${\pm}1\;{\mu}m$. Manufactured polymeric optical wavegude with the same using hot embossing process has also the same accuracy and approved its mass production capability.

  • PDF

Manufacturing of a Planar Lighting Device Using Cs3Sb Photocathode Emitters

  • Jeong, Hyo-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.41-45
    • /
    • 2016
  • The Cs3Sb photocathode was formed by non-vacuum process technology and successive in-situ photocathode vacuum device fabrication carried out in a process chamber. Performance testing of the device was followed. Light emission from the devices was induced by photoemitted electrons, which were accelerated by an anode electric field that was shielded from the photoemitter surface. The luminescent characteristics of the devices were investigated by measuring the optical parameters as functions of the applied anode voltages. The results showed that this approach could produce a more easily directed and controlled stream of light. These features make these devices suitable for a variety of planar lighting applications.

A Novel Monopole Antenna for ISM 2.45GHz/5.8GHz Dual Band Characteristics by a Linear Monopole Antenna Combined with a Crossed Planar Monopole Antenna (선형 모노폴 안테나와 십자형 모노폴 안테나의 결합에 의한 ISM 2.45GHz/5.8GHz 이중대역 특성을 가지는 안테나 설계)

  • Shim, Jae-Ruen
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.515-519
    • /
    • 2015
  • In this paper, we suggested the novel monopole antenna for dual band characteristics by a linear monopole antenna combined with crossed planar monopole antenna. The target frequency is ISM(Industrial Scientific Medical) 2.45GHz/5.8GHz. The distinctive features of the proposed antenna in this paper is based on the slit in the surface of a crossed planar monopole for the dual band characteristics and the omnidirectional radiation patterns. The compact size of the proposed antenna is $36mm{\times}5.4mm{\times}5.4mm$. According to the simulation results, the bandwidth, the reflection coefficients below -10dB, of 2.45GHz and 5.8GHz are 150MHz and 1.43GHz, respectively. Consequently the proposed antenna structures is apply to the antenna for dual band characteristics.