• Title/Summary/Keyword: plain bar

Search Result 55, Processing Time 0.026 seconds

An Experimental Study on Development Length of Untensioned Prestressing Strand (인장을 가하지 않은 PS강연선의 정착길이에 대한 실험적 연구)

  • Choi, Jun-Young;Ha, Sang-Su;Kim, Seung-Hun;Choi, Chang-Sik;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.331-334
    • /
    • 2005
  • The nature of bond of untensioned prestressed strand in concrete differs from that of plain or deformed reinforcing bar as well as tensioned prestressed strand. There is a very limited amount of published research information regarding bonding of this type reinforcing. In order to use and design untensioned strand as reinforcing, relationships defining the load transfer characteristics of the strand are necessary. A program based upon pullout tests was designed to develop data relating the critical parameters for determining load transfer behavior of the untensioned strand. The purpose of this study is to investigate the characteristics of bond and development length between untensioned strand and concrete. The test variables include diameter of strands (9.3mm, 12.7mm) and development lengths. The maximum bond stress at the 9.3mm and 12.7mm strands decreases with the increase of the rate of development length. The untensioned prestressed strands displayed bond performance when secure development length more than 80$\%$ according to the development of deformed bars equation.

  • PDF

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.

Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading

  • Tang, Chao-Wei
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.243-253
    • /
    • 2018
  • In recent years, concrete-filled box or tubular columns have been commonly used in high-rise buildings. However, a number of fire test results show that there are significant differences between high strength concrete (HSC) and normal strength concrete (NSC) after being subjected to high temperatures. Therefore, this paper presents an investigation on the fire resistance of HSC filled steel tubular columns (CFTCs) under combined temperature and loading. Two groups of full-size specimens were fabricated to consider the effect of type of concrete infilling (plain and reinforced) and the load level on the fire resistance of CFTCs. Prior to fire test, a constant compressive load (i.e., load level for fire design) was applied to the column specimens. Thermal load was then applied on the column specimens in form of ISO 834 standard fire curve in a large-scale laboratory furnace until the set experiment termination condition was reached. The results demonstrate that the higher the axial load level, the worse the fire resistance. Moreover, in the bar-reinforced concrete-filled steel tubular columns, the presence of rebars not only decreased the spread of cracks and the sudden loss of strength, but also contributed to the load-carrying capacity of the concrete core.

Direct Shear Test of Retrofit Anchors Using Deformed Reinforcement and Adhesive

  • Choi, Dong-Uk;Kim, Yong-Gon
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.91-99
    • /
    • 2000
  • A new type of retrof=t anchor bolt that uses deformed reinforcing bars and a commercial adhesive was developed and then an experimental study was carried out to determine the behavior of the anchors in direct shear. The steel-to-concl몫ete interface was tested. Plain concrete slabs with about 20-MPa compressive strength were used for 23 direct shear tests performed Test variables were anchor diameters (D16, D22. and D29) and edge effect. Three different shear tests were completed: simple shear, edge shear where anchors were pulled against the concrete core, and edge shear where anchors were pushed against the concrete cover In the simple and the edge shear tests where the anchors were pulled against the core, the theoretical dowel strength determined by (equation omitted) was achieved but with relatively large displacements. The shear resistances increased with the increasing displacements. In the edge shear test where the anchors were pushrd against the cover, the peak shear strengths signif=cantly lower than the theoretical dowel strength were determined due to cracks developed in concrete when the edge distance was 80 mm. The peak strengths were about 50% of the dowel strength for Dl6 bar. and about 25% or less of the dowel strength for D22 and D29 bars. Test results revealed that the edge shear where the anchor was pushed against the cover controled.

  • PDF

The Effect of Cheonmagudeng-um gagam(CGG) on Spontaneous Hypertensive Rat(SHR) (천마구등음가감(天麻鉤藤飮加減)이 고혈압 유관인자 및 SHR 병태모델에 미치는 영향)

  • Song, Byoung-Yong;Choi, Eun-Hee;Jung, Tae-San;Kang, Seong-Sun;An, Ga-Yong;Kim, Oh-Young;Jeon, Sang-Yun;Hong, Seok
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.3
    • /
    • pp.345-360
    • /
    • 2011
  • Objectives : This study was examined to investigate the effects of Cheonmagudeng-um gagam (CGG) extract on spontaneous hypertension. Methods : For the study of CGG, we divided rats into three groups. The normal group was Wister Kyoto rats (WKY). The control group was spontaneously hypertensive rats (SHR). The treatment group was SHR which were administered CGG extract (SHR-CGG). SHR-CGG were orally administered CGG extract that was diluted in distilled water at the various concentrations for 4 weeks (234.5 mg/kg) and SHR were orally administered the same dosage of plain distilled water as SHR-CGG. Then we measured anti-oxygen effects, ACE inhibitory activity, weight of heart and kidney, blood pressure, heart rate, plasma aldosterone, electrolyte, creatinine, uric acid, BUN, and observed the cortex of the cardiac muscle, kidney, and adrenal gland. Results : CGG increased DPPH scavenging activity and SOD similar activity depending on the concentration. CGG significantly decreased ROS, TNF-${\alpha}$, IL-6, IL-$1{\beta}$, heart weight, blood pressure, heart rate, aldosterone, and BUN in SHR. CGG increased ACE inhibition activity depending on the concentration. CGG inhibited the heart, kidney and adrenal gland tissue injury that is caused by hypertension. Conclusions : These results suggest that CGG is effective in treatment and prevention of hypertension.

Studies on the Effect of Fiber Reinforcing upon Mechanical Properties of Concrete and Crack Mode of Reinforoed Concrete (섬유보강이 콘크리트의 역학적 특성과 철근콘크리트의 균열성상에 미치는 영향에 관한 연구)

  • 박승범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.2
    • /
    • pp.4645-4687
    • /
    • 1978
  • This study was attempted to investigate the mechanical properties of concrete and crack control effects of reinforced concrete with steel and glass fiber. The experimental program includes tests on the properties of fresh concrete containing fibers, compressive strength, tensile strength, flexural strength, Young's modulus, Shrinkage and deformation of steel or glass fiber reinforced concrete. Also this study was carried out to investigate the effect of steel or glass fiber to retard the development in reinforced concrete subject to uniaxial tension and thus facilitate the use of steels of higher strength. The major conclusions that can be drawn from the studies are as follows: 1. The effect of the fibers in various mixes on fresh concrete confirmed that fibers do have a significant effect on the properties of fresh concrete, bringing much more stable and exhibiting a signiflcant reduction in surface bleeding, and that the cohesion is greatly improved and the internal resistance increases with fiber concentration. But the addition of an excess contents and length of fibers brings about the reduction of workability. 2. With the addition of steel fibers(1.5% Vol.) to concrete, the compressive strength as compared with plain concrete showed a very slight increase, but excess addition, over 1.5% Vol. of steel and glass fiber reduced its strength. 3. Splitting tensile strength of fiber reinforced concrete showed a significant increase tendency, as compared with plain concrete. In case of containing steel fiber (2.5%, 30mm), it showed that the maximum increase rate of 1.48 times as much rate, and in case of containing glass fiber (2.5%, 30mm), the increase rate of strength was 1.25 times as much rate. 4. Flexural strength of fiber reinforced concrete showed a significant tendency, as compared with plain concrete. Containing steel fiber (2.5%, 30mm) showed the maximum increase rate of 1.64 times as much rate and containing glass fiber (2.5%, 30mm) showed the increase rate of strength of 1.32 times as much rate, and in general, the 30mm length brougth the best results. 5. The strength ratio ($\sigma$b/$\sigma$c and $\sigma$t/$\sigma$c) increased, when steel fiber's average spacing was up to 3.05mm, but decreased when beyond 3.05mm, and it was confirmed that tensile or flexural strengths of steel fiber reinforced concrete are apparently governed by fiber's average spacing. 6. The compressive strain of fiber reinforced concrete showed a significant increasing tendency as the fiber was added, but Young's modulus. with the addition of steel and glass fibers, showed a slight decrease tendency. And according to the increase of flexural strength, a considerable increase was seen in toughness. 7. With the addition of fiber's the shrinkage of concrete was significantly decreased, in both case of adding steel fibers 12.5%, 30mm, and showed a significant decrease ratio, in average 30.4% and 36.7%, as compared with plain concrete. 8. With the increase of fiber volume fraction and length, the gained stress in reinforcing bar in concrete specimens increased in all crack widths, but at different rates, with the decrease of fiber diameter, the stress showed a considerable increasing tendency. And the duoform steel fibers showed the greatest improvement, as compared with the other types tested. 9. The influence of fiber dimensions in order of significanse on the machanical properties of concrete and the crack control of reinforced concrete was explained as follows: content, length, aspect ratio and dimeter.

  • PDF

A Study of the Physical Properties of Weft Knit Fabrics (위편조직(緯編組織)의 물성(物性)에 관한 연구(硏究))

  • Kim, In-Suk;Lee, Soon-Hong
    • Journal of Fashion Business
    • /
    • v.2 no.4
    • /
    • pp.93-101
    • /
    • 1998
  • Knit products which had been limited only to underwear, recently became popularized, fashionized and highly classified covering even outer garments such as sportswear like golfwear, woman's dress, and man' s suit. As fashion cycle is getting shorter and the more a nation advanced prefers knit to woven fabrics knit industry has a very bright prospect, particularly woman's knit which is sensitive to fashion can be said as a fashion product with high value added. This study is to grasp the physical properties of stitch which are fundamental to the development of knit products. For this purpose, 2/20s of 100% wool were woven by the author of this study to basic plain stitch, rib stitch, varied transfer stitch, and float stitch on a SEMASEIKI cross knitter 7G to test the physical properties, and the result was as follows; 1. As for the relation between knit stitch and rate of extension recovery, rate of extension recovery was higher in the course direction than in the wale direction of three stitches except transfer stitch; rib stitch showed the highest rate of extension recovery in the course direction while float stitch showed the highest rate of extension recovery in the wale direction. 2. As for the relation between knit stitch and bursting strength elastic rib stitch showed higher bursting strength to indicate elasticity is an important factor of bursting strength and float stitch showed higher bursting strength too to indicate that the floating yarn on the surface plays a role of support. 3. As for the relation between knit stitch and air permeability perforated transfer stitch showed the lowest air permeability to prove that the size of perforation affects on the air permeability a great deal. 4. As for the relation between knit stitch and warmth retaining rib stitch through two lined needle bar showed the highest degree. The reason the warmth of perforated transfer stitch didn't decrease much was because the perforation wasn't big enough and content of air increased from the unevenness of the perforated parts through stitch variation. Based upon this result, each stitch can be characteristically summarized as follows; plain stitch showed a stable condition of knit cloth in four kinds of physical property test. And rib stitch is proper to tighten the edge of sleeve or clothe making use of its excellent extension recovery and to make socks for the highest bursting strength and warmth retaining. In the case of transfer stitch, seasonable designs can be taken by controlling the size of loop. Considering the pleasantness, underwear should be made of stitches with good air permeability float stitch was revealed to have color and pattern effects and a great bursting strength. This study has limitations in the aspect that it dealed with a small part of various knit stitches and the items of physical property test were not enough. The author of this study hopes that further studies would make deeper understandings about knit stitch based on more varied stitches and physical property tests ultimately to contribute to the development of fashionable designs proper to maximize the usage, function and originality.

  • PDF

A Study on Injection Characteristics of High Temperature Fuel through Orifice Injectors (고온 연료의 오리피스 인젝터 분사특성 연구)

  • Lee, Hyung Ju;Choi, Hojin;Kim, Ildoo;Hwang, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.119-126
    • /
    • 2014
  • An experimental study was conducted to study fuel injection characteristics through plain orifice injectors when the fuel was heated to the temperature higher than its boiling point. Three injectors with different orifice diameters were used to measure the flow coefficient (${\alpha}$) for the injection pressure ranges of 3, 5, and 10 bar and the fuel temperature ranges between 50 and $270^{\circ}C$. The study showed that ${\alpha}$ decreases gradually with the fuel temperature below $180^{\circ}C$ while it drops abruptly when the temperature goes beyond $187^{\circ}C$, the boiling temperature of the fuel. The slope of ${\alpha}$ bifurcated at the boiling temperature for different injection pressures, and ${\alpha}$ decreased faster for the lower injection pressure due to the more active boiling in the injector. In addition, the larger orifice diameter had the higher ${\alpha}$ value, and ${\alpha}$ jumped at moderate temperature ranges when the injection pressure was low, implying the turbulent-laminar transition phenomena. The measured ${\alpha}$ was plotted against the cavitation number($K_c$), and the characteristics were independent of the applied pressure for small injectors when the fuel was evaporated before it was injected.

Variation of Bird Community after Implementation of Close-to-Nature River Improvement Techniques in the Yangiae Stream (양재천에서 자연형 하천공법적용에 의한 조류(鳥類)군집의 변화)

  • Kim, Jung-Soo;Chae, Jin-Hwak;Koo, Tae-Hoe
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.74-82
    • /
    • 2003
  • This study was carried out to understand how the bird community would change in a stream ecosystem after implementation of close-to-nature river improvement techniques conducted on the Gwacheon, Seocho and Hakyeul reaches in the Yangiae Stream, 'Seoul. At the Gwacheon reach, the number of species and individuals tended to decline. However, at the Seocho reach, the number of species was increased while the number of individuals appeared to be not changed greatly. Especially, density of Dabbling Ducks were rapidly increased. At the Hakyeul reach was both the number of species and the number of individuals were increased. Density of Herons and Dabbling Ducks rose, while density of Wagtails was decreased suddenly. Except the Gwacheon reach, the survey areas were gradually improved in species richness and density after the construction of river improvement. We suggested that the naturally-formed meandering (channel) bar, restoration of riparian vegetation and artificial ponds were helpful for birds habitation, however bicycle path constructed in flood plain was negative.

Corrosion and Bond Strength Characteristics of Anti-Corrosive Cement Coated Reinforcements (방청시멘트 도막철근의 내부식 성능 및 부착강도 성능연구)

  • Oh, Byung-Hwan;Lee, Jong-Ryul;Cho, Yun-Ku
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.251-259
    • /
    • 1999
  • Recently, large scale concrete structures exposed to severe environments are increasingly built in various locations, The corrosion may severely affect the durability and service life of such a concrete structure. It is, therefore, necessary to develop a method to enhance the corrosion resistance of a concrete, The purpose of this paper is, therefore, to investigate the corrosion resistance and bond strength characteristics of anti-corrosive cement coated reinforcements. To this end, a comprehensive experimental study has been done to explore the corrosion and bond behavior of those coated reinforcements. The test results indicate that the anti-corrosive cement coated reinforcements do not exhibit any corrosion after corrosion tests and the bond strengths are very good as much as plain bar. It is seen that the anti-corrosive cement coated reinforcements can be efficiently used to enhance the durability of reinforced concrete structures.