• Title/Summary/Keyword: placement efficiency

Search Result 164, Processing Time 0.024 seconds

A Cost-Efficient Job Scheduling Algorithm in Cloud Resource Broker with Scalable VM Allocation Scheme (클라우드 자원 브로커에서 확장성 있는 가상 머신 할당 기법을 이용한 비용 적응형 작업 스케쥴링 알고리즘)

  • Ren, Ye;Kim, Seong-Hwan;Kang, Dong-Ki;Kim, Byung-Sang;Youn, Chan-Hyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.3
    • /
    • pp.137-148
    • /
    • 2012
  • Cloud service users request dedicated virtual computing resource from the cloud service provider to process jobs in independent environment from other users. To optimize this process with automated method, in this paper we proposed a framework for workflow scheduling in the cloud environment, in which the core component is the middleware called broker mediating the interaction between users and cloud service providers. To process jobs in on-demand and virtualized resources from cloud service providers, many papers propose scheduling algorithms that allocate jobs to virtual machines which are dedicated to one machine one job. With this method, the isolation of being processed jobs is guaranteed, but we can't use each resource to its fullest computing capacity with high efficiency in resource utilization. This paper therefore proposed a cost-efficient job scheduling algorithm which maximizes the utilization of managed resources with increasing the degree of multiprogramming to reduce the number of needed virtual machines; consequently we can save the cost for processing requests. We also consider the performance degradation in proposed scheme with thrashing and context switching. By evaluating the experimental results, we have shown that the proposed scheme has better cost-performance feature compared to an existing scheme.

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.

A Study on the Inflow Pattern of Paint according to the Hole Design of the Drum-base in the Pressure-roller (압송롤러 드럼베이스의 홀 설계에 따른 페인트 유입양상에 대한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.487-493
    • /
    • 2020
  • Recently, the ministry of environment banned the use of the existing airless method using the spray in painting industrial facilities. Therefore, it is necessary to develop a pressure-roller attached to existing airless painting systems. The hole design of the SUS piping and drum-bases of pressure-rollers currently developed and sold have not been studied in detail, so their efficiency is questionable. In particular, if sufficient paint is not supplied to both ends of the roller, it is necessary to rework with a brush after painting. Therefore, the holes of the drum base need to be distributed so that the paint can flow to both ends of the roller. In this study, numerical analysis was performed to determine the effects of the hole design in the SUS piping and drum-base on the flow patterns of the paint and to suggest more efficient design measures. The analysis results showed that the uniform placement of the holes in the SUS piping is good for the balanced inflow of the paint. For the drum-base, the paint can flow better into both ends of the roller when the holes are concentrated and machined on both ends of the drum-base.

The Expansion Strategy for the New Route between Korea and Hungary (한-헝가리 간의 신물류 확대전략)

  • Seo, Dae-Sung
    • Journal of Distribution Science
    • /
    • v.12 no.6
    • /
    • pp.59-65
    • /
    • 2014
  • Purpose - The competitiveness of logistics in the 21st century rests on ensuring the efficiency and effectiveness of its local hub. While considering entry into a niche market in local logistics, it is pertinent to note that Budapest is emerging as a hub in EU enlargement in Eastern Europe. Big, small, and medium-sized businesses in Korea entered Hungary in the early 1990s since then, there has been a significant increase in Korean presence, of approximately 130 times. This study aimed to identify the key distribution issues that have emerged in relation to Eastern Europe. Research design, data, and methodology - This study indicates that 33 major Korean companies were located in Hungary, which serves as an out post to enter the European marketplace. However, Korea's exports to Hungary have declined (-32.0% in 2012) because of a loss of competitiveness against multinational corporations, due to factors such as the rise in current local distribution costs and wages. Hungary, on the other hand, through diversification and expansion of foreign trade with the non-EU markets, including Korea, is increasing its exports. Strategies of emerging countries are compared and reviewed in this study, by examining the vicissitudes of Hungary's distribution methods. Results - There are issues regarding Hungary's innovative ability. Hungary has a history of low wages and high skilled labor. However, the outflow of high-quality human resources for high-wages has become more extensive, and this underlines concerns that the CEE's trade hub is moving to neighboring countries. After the European financial crisis in 2010, the Hungarian economy is now developing, because of the IMF's measures, and it is being transformed into a trade surplus nation, while regaining distribution volumes rapidly. However, if there is continued lack of investment, the supply chain is weakened and exports decline amidst competition with TNCs or with China's distribution networks. Conclusions - It is necessary to create a new logistics approach for increasing trade between Korea and Hungary. First, Korean small and medium enterprises (SMEs) should build trust by working with advanced Hungarian talent, and they should expand into state-of-the-art fields instead of being confined to traditional sectors. Second, this study focuses on limiting and lowering their high expectations for success according to foreign direct investment (FDI) inflows and the role in the CEE distribution hub Korea should try to strengthen the distribution hub with its centralized population, using better, more highly educated human resources, thereby sustaining more innovative ability. Further, the positive effects of these measures are manifested in enhanced business on both sides of Hungary, namely, the EU and non-EU nations such as Turkey and emerging markets around Europe, and a better engagement in the core placement of culture and industry. For this, Korea can contribute to, and benefit from, a Hungarian logistics center, for adopting the high-tech cluster systems and commercializing distribution technology such as RFID·USN.

Understanding the Effects of Deep Fertilization on Upland Crop Cultivation and Ammonia Emissions using a Newly Developed Deep Fertilization Device (신개발 심층시비장치를 이용한 심층시비의 밭작물 재배 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim;Seong-Jik Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Nitrogen fertilizers applied to agricultural lands for crop cultivation can be volatilized as ammonia. The released ammonia can catalyze the formation of ultrafine dust (particulate matter, PM2.5), classified as a short-lived climate change pollutant, in the atmosphere. Currently, one of the prominent methods for fertilizer application in agricultural lands is soil surface application, which comprises spraying the fertilizers onto the soil surface, followed by mixing the fertilizers with the soil. Owing to the low nitrogen absorption rate of crops, when nitrogen fertilizers are applied in this manner, they can be lost from land surfaces through volatilization. Therefore, investigating a new fertilization method to reduce ammonia emissions and increase the fertilizer utilization efficiency of crops is necessary. In this study, to develop a method for reducing ammonia emissions from nitrogen fertilizers applied to soil surfaces, deep fertilization was conducted using a newly developed deep fertilization device, and ammonia emissions from barley, garlic, and onion fields were examined. Conventional fertilization (surface application) and deep fertilization (soil depth of 25 cm) were conducted for analysis. The fertilization rate was 100% of the standard fertilization rate used for barley, and deep fertilization of N, P, and K fertilizers was implemented. Ammonia emissions were collected using a wind tunnel chamber, and quantified subsequently susing the indole-phenol blue method. Ammonia emissions released from the basal fertilizer application persisted for approximately 58 d, beginning from approximately 3 d after fertilization in conventional treatments; however, ammonia was not released from deep fertilization. Moreover, barley, garlic, and onion yields were higher in the deep fertilization treatment than in the conventional fertilization treatment. In conclusion, a new fertilization method was identified as an alternative to the current approach of spraying fertilizers on the soil surface. This new method, which involves injecting nitrogen fertilizers at a soil depth of 25 cm, has the potential to reduce ammonia emissions and increase the yields of barley, garlic, and onion.

Full mouth rehabilitation using 3D printed crowns and implant assisted removable partial denture for a crossed occlusion: a case report (3D 프린팅 금관과 임플란트 보조 국소의치를 이용한 엇갈린 교합의 전악 수복 증례)

  • Sung-Hoon Lee;Seong-Kyun Kim;Seong-Joo Heo;Jai-Young Koak;Ji-Man Park
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.367-378
    • /
    • 2023
  • With the recent development of computer-aided design-computer-aided manufacturing technology and 3D printing technology, and the introduction of various digital techniques, the accuracy and efficiency of top-down definitive prosthetic restoration are increasing. In this clinical case, stable occlusion support was obtained through the placement of a total of 9 maxillary and mandibular posterior implants in patient with anterior-posterior crossed occlusion. The edentulous area of the maxillary anterior teeth, which showed a tendency of high resorption of the residual alveolar bone, was restored with a Kennedy Class IV implant assisted removable partial denture to restore soft tissue esthetics. Computed tomography guided surgery was used to place implants in the planned position, double scan technique was used to reflect the stabilized occlusion in the interim restoration stage to the definitive prostheses, and metal 3D printing was used to manufacture the coping and framework. This clinical case reports that efficient and predictable top-down full mouth rehabilitation was achieved using various digital technologies and techniques.

Analysis of Rollover Angle According to Arrangement of Main Parts of Electric Tractor Using Dynamic Simulation (시뮬레이션을 이용한 전기 트랙터 주요 부품 배치에 따른 전도각 분석)

  • Jin Ho Son;Yeong Su Kim;Yu Shin Ha
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.77-84
    • /
    • 2023
  • In the agricultural sector, power sources are being developed that use alternative energy sources such as electric tractors and hydrogen tractors, away from internal combustion engine tractors. As parts such as engines and transmissions used in conventional internal combustion engine tractors are replaced with motors and batteries, the center of gravity changes, and thus the risk of rollover should be considered. The purpose of this study is to analyze the overturn angle of the main parts of the electric tractor through dynamic simulation to minimize the overturn accident and to derive the optimal arrangement of parts to improve stability. A total of nine dynamics simulations were conducted by designing three components of the PTO motor, drive motor and the battery pack, and three factors of the arrangement method. As a result of the experiment, it was confirmed that Type3 Level3, in which the drive motor and the PTO motor are located at the front and rear of the tractor, and two battery packs are located in the middle of the tractor, has a high rollover angle. As a result of this study, the stability increased as the center of gravity was placed backward and located below. Future research needs to be done to find the optimal location of parts considering their performance and placement efficiency.

Optimal deployment of sonobuoy for unmanned aerial vehicles using reinforcement learning considering the target movement (표적의 이동을 고려한 강화학습 기반 무인항공기의 소노부이 최적 배치)

  • Geunyoung Bae;Juhwan Kang;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.214-224
    • /
    • 2024
  • Sonobuoys are disposable devices that utilize sound waves for information gathering, detecting engine noises, and capturing various acoustic characteristics. They play a crucial role in accurately detecting underwater targets, making them effective detection systems in anti-submarine warfare. Existing sonobuoy deployment methods in multistatic systems often rely on fixed patterns or heuristic-based rules, lacking efficiency in terms of the number of sonobuoys deployed and operational time due to the unpredictable mobility of the underwater targets. Thus, this paper proposes an optimal sonobuoy placement strategy for Unmanned Aerial Vehicles (UAVs) to overcome the limitations of conventional sonobuoy deployment methods. The proposed approach utilizes reinforcement learning in a simulation-based experimental environment that considers the movements of the underwater targets. The Unity ML-Agents framework is employed, and the Proximal Policy Optimization (PPO) algorithm is utilized for UAV learning in a virtual operational environment with real-time interactions. The reward function is designed to consider the number of sonobuoys deployed and the cost associated with sound sources and receivers, enabling effective learning. The proposed reinforcement learning-based deployment strategy compared to the conventional sonobuoy deployment methods in the same experimental environment demonstrates superior performance in terms of detection success rate, deployed sonobuoy count, and operational time.

Strategies to Revitalize Bus Exterior Advertisement for Enhancing Bus Transportation Profits: Focused in Seoul (버스운송 수익증대를 위한 버스 외부광고 활성화 방안: 서울시를 중심으로)

  • Lim, Kwangk-kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.361-373
    • /
    • 2024
  • Advertising on the exterior of buses was initiated in 1985 with the aim of generating operational funds for the 1988 Seoul Olympics. However, despite numerous technological advancements, the regulations governing the method (sheet attachment), area, and placement of exterior advertising on buses have remained unchanged to date. This has constrained the potential for profitability and efficiency in bus exterior advertising. According to Seoul Metropolitan Government, metro usage increased by 23 % in 2019 (prior to the COVID-19) compared to 2006, while bus usage decreased by 10 %. Consequently, financial subsidy for buses surged significantly over the past five years (2018-2022), averaging around KRW 450 billion, which is approximately 1.27 times the average for the preceding decade (2013-2022). The majority of revenue for bus transportation agencies is derived from passenger fares (81.1 %) and subsidies from Seoul City (17.5 %). Hence, it is imperative to enhance the share of revenue from sources other than fares. This study proposes an expansion of the role of bus exterior advertising by increasing the advertising area as a means to increase non-fare revenue. Two alternatives were proposed to expand the advertising area by 17 % and 94 %, respectively, compared to the current level, and their potential impacts were analyzed. The findings indicate that advertising revenue could increase from a minimum of KRW 3.2 billion to a maximum of KRW 53.9 billion, and public subsidies could be reduced by as much as 11.9 %. The bus exterior advertising can serve as an effective approach to diversify transportation revenue and decrease public subsidies.

Experimental Study on Ventilation Efficiency of Leakage Gas Based on Supply and Exhaust Vent Location (밀폐공간에서 급·배기구 위치에 따른 누출 가스의 환기효과에 관한 실험적 연구)

  • Ha-Young Kim;Seong-Min Lee;Byeol Kim;Kwang-Il Hwang
    • Journal of Navigation and Port Research
    • /
    • v.48 no.4
    • /
    • pp.274-283
    • /
    • 2024
  • Climate change is currently one of the most pressing environmental issues, primarily caused by carbon emissions from fossil fuel usage. As a result, alternative fuels that effectively reduce carbon emissions are garnering more attention. Among these alternatives, hydrogen has numerous advantages, such as its ability for large-scale storage and transport. However, it is crucial to prioritize safety measures, particularly in facilities that handle hydrogen, due to its highly flammable and fast-spreading nature. This study aims to compare and analyze the placement of supply and exhaust vents to efficiently release hydrogen in the event of a leak in an enclosed space. The experiments involved six different scenarios, each with various combinations of supply and exhaust vents. To ensure the experimental process's safety, helium, which shares similar physical properties with hydrogen, was used to analyze the internal oxygen concentration during ventilation system operations. The results revealed that among the six scenarios, Case 2, which employed a lower side supply vent and an upper side exhaust vent, exhibited the shortest ventilation time of 4 minutes and 30 seconds. Additionally, the decrease rate in oxygen concentration was examined in the upper, middle, and lower areas. Ventilation utilizing an upper surface supply vent and two exhaust vents on the upper surface and upper side (Case 6), showed lower oxygen concentration values in the upper area, while Case 2 yielded lower values in the middle and lower areas. Therefore, it is crucial to select an appropriate supply and exhaust vent configuration considering the space's characteristics and usage environment.