• Title/Summary/Keyword: pixel matrix

Search Result 194, Processing Time 0.023 seconds

Texture Analysis of Nickel Plating Surface Roughness Using Statistical Method (통계적 방법을 이용한 니켈도금 표면거칠기의 텍스처 해석)

  • Gong, Jae-Hang;Sa, Seung-Yun;Yu, Bong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1254-1260
    • /
    • 2000
  • There have been many developments in super precision working technique and working method up to, now. But, it is very difficult to evaluate working surface accurately without the technicians experience and judgment. Surface roughness tester using stylus was used to measure surface condition generally But this method is not so desirable because of damage on test piece caused by contact between the workpiece and the stylus sensor. As a result, non-contact method was known as a good way to carry, out this process without damage. However, this is a difficult one among the various measuring methods. So we are tying to suggest a new method using texture analysis through image processing to get a surface information in worked test piece. Co-occurrence matrix using difference of gray levels between a pixel and its neighboring one was used to study behavior of surface roughness and to J acquire data for analysis. Standard specimen was adapted to verify this research. We suggest texture information method in order to evaluate surface state for the best measurement system.

An recognition of printed chinese character using neural network (신경망을 이용한 인쇄체 한자의 인식)

  • 이성범;오종욱;남궁재찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1269-1282
    • /
    • 1993
  • In this paper, we propose to method of recognizing printed chinese characters which combine the coventional deterministic methods and the neural networks. Firstly, we extract four directional vector of strokes from chinese characters. Secondly, we make the mesh of the center of gravity in the vector and then constitute the H x8 feature matrix using black pixel lenth from each meshs. This normalized feature matrix value offer as the input of neural network for classifying into the 14 character types. And this calssified character classify again into Busu group by the Busu recognizing neural network. Finally, we recognize each characters using the distance of similarity between input characters and reference characters. The usefulness of the proposed algorithm is evaluated by experimenting with recognizing the chinese characters.

  • PDF

Water body extraction in SAR image using water body texture index

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.337-346
    • /
    • 2015
  • Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.

Flexible Microelectronics; High-Resolution Active-Matrix Electrophoretic Displays

  • Miyazaki, Atsushi;Kawai, Hideyuki;Miyasaka, Mitsutoshi;Nebashi, Satoshi;Shimoda, Tatsuya;McCreary, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.575-579
    • /
    • 2005
  • A beautiful, flexible active-matrix electrophoretic display (AM-EPD) device is reported. The flexible AM-EPD device has a $40.0{\times}30.0\;mm^2$ display area, measures about 0.27 mm in thickness, weighs about 0.45 g and possesses only 20 external connections. The flexible AM-EPD device displays clear black-and-white images with 5 gray-scales on $160{\times}120$ pixels. The display is free from residual image problems, because we use an area-gray-scale method on $320{\times}240$ EPD elements, each of which is driven with binary signals. Each pixel consists of 4 EPD elements. In addition, since the response time of the electrophoretic material is as long as approximately 400 ms and since the display possesses a large number of EPD elements, we have developed a special driving method suitable for changing EPD images comfortably. A complete image is formed on the AM-EPD device, consisting of a reset frame and several, typically 6, image frames.

  • PDF

Development of 40 inch Full Color AMOLED Display

  • Chung, K.;Huh, J.M.;Sung, U.C.;Chai, C.C.;Lee, J.H.;Kim, H.;Lee, S.P.;Goh, J.C.;Park, S.K.;Ko, C.S.;Koh, B.S.;Shin, K.J.;Choi, J.H.;Jung, J.H.;Kim, N.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.781-784
    • /
    • 2005
  • We have developed technology to fabricate large-size active matrix organic light-emitting diode (AMOLED) displays with good color purity. Using these innovations, we have developed a 40inch diagonal WXGA AMOLED full color display. Because the TFT circuitry occupies a large portion of the pixel structure, an efficient white emission OLED is essential to integrate the device onto the active matrix backplane. The development of these technologies enables OLED displays to fulfill the requirements for larger size applications such as HDTVs

  • PDF

Methodology for numerical evaluation of fracture resistance under pinch loading of spent nuclear fuel cladding containing reoriented hydrides

  • Seyeon Kim;Sanghoon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1975-1988
    • /
    • 2024
  • It is important to maintain cladding integrity in spent nuclear fuel management. This study proposes a numerical analysis method to evaluate the fracture resistance of irradiated zirconium alloy cladding under pinch load known to cause Mode-III failure. The mechanical behavior and fracture of the cladding under pinch loading can be evaluated by a Ring Compression Test (RCT). To simulate the fracture of hydride precipitates, zirconium matrix, and Zr/hydride interfaces under the stress field generated by RCT, a micro-structure crack propagation simulation method based on Continuum Damage Mechanics (CDM) has been proposed. Our RCT simulation model was constructed from microscopic images of irradiated cladding. In this study, we developed an automated process to generate a pixel-based finite element model by separating the hydride precipitates, zirconium matrix, and interfaces using an image segmentation method. The appropriate element size was selected to ensure the efficiency and accuracy of a crack propagation simulation. The load-displacement curves and strain energies from RCT were compared and analyzed with the simulation results of different element sizes. The finalized RCT simulation model can be used to establish the failure criterion of fuel rods under pinch loading. The advantages and limitations of the proposed method are fully discussed here.

Usefulness of DFOV Changes in Pediatric PET/CT Image Reconstruction (PET/CT에서 소아환자 영상 재구성 시DFOV 변화의 유용성)

  • Choi, Sung-Wook;Choi, Choon-Ki;Lee, Kyoo-Bok;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.171-175
    • /
    • 2008
  • Purpose: There have been something difficulties in locating focuses and quantitative analysis in case of pediatric patients because of the relatively small body compared to adults. This author of this study, therefore, evaluated the usefulness of DFOV (Display Field Of View) according to its changes in PET/CT image reconstruction by means of the phantom experiment and pediatric patients examination. Materials & Methods: 0.023 MBq/cc of $^{18}F$-FDG was put into the uniform NU2-94 phantom, and then emission scan was acquired for 10 minutes. For reconstruction, DFOV values were changed to 50, 45, 40, 35, 30, and 25 cm respectively. As for patient images, 20 patients who were diagnosed as the one or suspicion of the children tumor are targeted from Oct 2007 to Jan 2008. For image reconstruction, 50 cm was the basis of DFOV, and the value was adjusted to DFOV 45 cm to 25 cm respectively. In the phantom and the reconstruction image of pediatric patients, the changes in pixel size and $SUV_{max}$ according to DFOV changes were analyzed. Results: As DFOV decreased to 50, 45, 40, 35, 30, and 25 cm by means of the phantom, the pixel size was changed to 3.906, 3.515, 3.125, 2.734, 2.343, and 1.953 mm respectively. Besides, as a result of reconstruction DFOV in images of pediatric patients to 50, to 25 cm, the different values of $SUV_{max}$ are shown as 3.3, 7.3, 12, 14, 18% and 2.6, 4.3, 5.0, 7.0, 10.0% on respectively when 50 cm was the standard. Conclusion: In $SUV_{max}$ using the phantom, as DFOV decreased every 5 cm, the mean value gradually increased. With 50 cm as the standard, the increase rates were 3.7, 6.5, 11.2, 19.5, and 32.1% respectively. As for pediatric patients image too, as DFOV decreased, the rates increased as in the phantom experiment. In image reconstruction, since DFOV decrease regardless of matrix size change reduced the pixel size, the image quality can be improved. This would be more useful than reconstruction and enlarge images of pediatric patients in the same way of examining adults. However, when the value of 35 cm DFOV was applied, this may result in truncated artifact, and thus the application should be properly controlled. Change of DFOV may produce better image for pediatric patients, but changes of SUV values according to DFOV change should be considered in reading.

  • PDF

Development of $14"{\times}8.5"$ active matrix flat-panel digital x-ray detector system and Imaging performance (평판 디지털 X-ray 검출기의 개발과 성능 평가에 관한 연구)

  • Park, Ji-Koon;Choi, Jang-Yong;Kang, Sang-Sik;Lee, Dong-Gil;Seok, Dae-Woo;Nam, Sang Hee
    • Journal of radiological science and technology
    • /
    • v.26 no.4
    • /
    • pp.39-46
    • /
    • 2003
  • Digital radiographic systems based on solid-state detectors, commonly referred to as flat-panel detectors, are gaining popularity in clinical practice. Large area, flat panel solid state detectors are being investigated for digital radiography. The purpose of this work was to evaluate the active matrix flat panel digital x-ray detectors in terms of their modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). In this paper, development and evaluation of a selenium-based flat-panel digital x-ray detector are described. The prototype detector has a pixel pitch of $139\;{\mu}m$ and a total active imaging area of $14{\times}8.5\;inch^2$, giving a total 3.9 million pixels. This detector include a x-ray imaging layer of amorphous selenium as a photoconductor which is evaporated in vacuum state on a TFT flat panel, to make signals in proportion to incident x-ray. The film thickness was about $500\;{\mu}m$. To evaluate the imaging performance of the digital radiography(DR) system developed in our group, sensitivity, linearity, the modulation transfer function(MTF), noise power spectrum (NPS) and detective quantum efficiency(DQE) of detector was measured. The measured sensitivity was $4.16{\times}10^6\;ehp/pixel{\cdot}mR$ at the bias field of $10\;V/{\mu}m$ : The beam condition was 41.9\;KeV. Measured MTF at 2.5\;lp/mm was 52%, and the DQE at 1.5\;lp/mm was 75%. And the excellent linearity was showed where the coefficient of determination ($r^2$) is 0.9693.

  • PDF

Separations and Feature Extractions for Image Signals Using Independent Component Analysis Based on Neural Networks of Efficient Learning Rule (효율적인 학습규칙의 신경망 기반 독립성분분석을 이용한 영상신호의 분리 및 특징추출)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.200-208
    • /
    • 2003
  • This paper proposes a separation and feature extraction of image signals using the independent component analysis(ICA) based on neural networks of efficient learning rule. The proposed learning rule is a hybrid fixed-point(FP) algorithm based on secant method and momentum. Secant method is applied to improve the performance by simplifying the 1st-order derivative computation for optimizing the objective function, which is to minimize the mutual informations of the independent components. The momentum is applied for high-speed convergence by restraining the oscillation in the process of converging to the optimal solution. The proposed algorithm has been applied to the composite images generated by random mixing matrix from the 10 images of $512\times512$-pixel. The simulation results show that the proposed algorithm has better performances of the separation speed and rate than those using the FP algorithm based on Newton and secant method. The proposed algorithm has been also applied to extract the features using a 3 set of 10,000 image patches from the 10 fingerprints of $256\times256$-pixel and the front and the rear paper money of $480\times225$-pixel, respectively, The simulation results show that the proposed algorithm has also better extraction speed than those using the another methods. Especially, the 160 basis vectors(features) of $16\times16$-pixel show the local features which have the characteristics of spatial frequency and oriented edges in the images.

Optical Monte Carlo Simulation on Spatial Resolution of Phosphor Coupled X-ray Imaging Detector (형광체 결합형 X선 영상검출기의 공간 해상력 몬테카를로 시뮬레이션)

  • Kang, Sang-Sik;Kim, So-Yeong;Shin, Jung-Wook;Heo, Sung-Wook;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.328-328
    • /
    • 2007
  • Large area matrix-addressed image detectors are a recent technology for x-ray imaging with medical diagnostic and other applications. The imaging properties of x-ray pixel detectors depend on the quantum efficiency of x-rays, the generated signal of each x-ray photon and the distribution of the generated signal between pixels. In a phosphor coated detector the light signal is generated by electrons captured in the phosphor screen. In our study we simulated the lateral spread distributions for phosphor coupled detector by Monte Carlo simulations. Most simulations of such detectors simplify the setup by only taking the conversion layer into account neglecting behind. The Monte Carlo code MCNPX has been used to simulate the complete interaction and subsequent charge transport of x-ray radiation. This has allowed the analysis of charge sharing between pixel elements as an important limited factor of digital x-ray imaging system. The parameters are determined by lateral distribution of x-ray photons and x-ray induced electrons. The primary purpose of this study was to develop a design tool for the evaluation of geometry factor in the phosphor coupled optical imaging detector. In order to evaluate the spatial resolution for different phosphor material, phosphor geometry we have developed a simulation code. The developed code calculates the energy absorption and spatial distribution based on both the signal from the scintillating layer and the signal from direct detection of x-ray in the detector. We show that internal scattering contributes to the so-called spatial resolution drop of the image detector. Results from the simulation of spatial distribution in a phosphor pixel detector are presented. The spatial resolution can be increased by optimizing pixel size and phosphor thickness.

  • PDF