Characteristics of an active pixel switch readout circuit were studied by SPICE simulation. A simple readout circuit consists of an operation amplifier, a diode, and a down-counter was suggested, and its successful operation was verified by showing that the differences in the detected signal intensity are accordingly converted to modulation of the voltage pulses generated by the comparator. A scheme to use these pulses to generate the original image was also put forward.
본 논문의 목적은 원격 탐사 영상에서 잡음을 제거하기 위해 중심 화소와 통계적으로 유사한 이웃화소들을 선택하늘 방법을 제시하고 이 결과를 평균 곡률 확산과 결합하는 방법을 제시하는데 있다. 균일한 밝기값 영역에 속하는 화소들을 검출하기 위해 이웃 화소들을 순차적으로 선택할 때 그 선택하는 순서에 따라 선택된 영역의 통계적 특성이 달라지므로 이웃 화소의 선택 순서는 매우 중요하다. 본 논문에서는 통계적으로 유사한 특성을 가지는 이웃 화소를 선택하기 위해서 중심 화소와 이웃 화소의 밝기값 차를 계산하고 이를 크기 순으로 정렬하여 얻어지는 순위 차 벡터(rank-ordered differences vector)를 이용하는 효과적인 방법을 제안한다. 순위 차 벡터의 항들을 영역 확장 방법을 이용하여 균일 순위 차 벡터(homogeneous rank-ordered differences vector)와 이상점 순위 차 벡터 (outlier rank-ordered differences vector)로 분할한다. 균일 순위 차 벡터의 항에 속하는 이웃 화소에 대해서만 중심 화소의 밝기값 갱신에 기여하도록 확산 계수를 선택적으로 할당하는 라인 프로세스를 평균 곡률 확산에 결합한다. 제안한 방법은 모든 이웃 화소를 이용하여 중심 화소의 밝기값을 갱신하는 기존의 잡음 제거 필터에 비해 잡음 제거 효과가 뛰어남을 항공 영상 및 TerraSAR-X 위성 영상을 이용한 실험을 통해 확인하였다.
움직임 추정은 H.264의 비디오 코딩 과정에서 가장 많은 연산량을 차지하는 중요한 처리과정이다. 움직임 추정 과정에서 정수배 화소 단위에서의 탐색에 비하여, 1/2 화소 (half-pixel)와 1/4 화소(quarter-pixel) 단위까지의 움직임 추정은 영상압축률을 높일 수 있지만, 계산의 복잡도가 늘어나는 문제가 있다. 본 논문에서는 각 블록간의 절대 오차 값인 SAD (Sum of Absolute Difference)가 최소 점을 기준으로 포물선 모양의 분포를 나타내는 특성 및 1/2 단위와 1/4 단위의 화소 보간 특성을 이용하여 움직임 추정 과정에서 탐색 점을 줄임으로써 처리속도를 증가시키고, 계산의 복잡도를 줄이는 알고리듬을 제안하였다. 제안한 방법에서는, 정수 화소 단위에서의 가장 작은 SAD를 갖는 점을 기준으로 주위 8점 가운데 두 번째로 SAD가 작은 점을 찾아 해당 방향으로 1/2 화소 단위의 움직임 추정을 행하였고, 1/4 화소 단위에서도 1/2 화소단위에서 두 번째로 SAD가 작은 점 방향으로 움직임 추정을 실행하였다. 그 결과 기존 알고리듬에 비해 비교적 화질에 변화가 없고, 인코더 처리과정 에서 약 20%의 빠른 속도로 처리하는 결과를 보였다.
본 논문은 안정적이며 빠르게 동작하는 화소기반 변이공간영상기반의 스테레오 정합방법을 제안한다. 스테레오영상은 서로 상이한 두 영상이 아니라 수평방향의 이동만이 존재하는 거의 유사한 명상이다. 따라서 큰 정합윈도우를 사용하는 정합방법이 꼭 필요하지는 않다. 그러나, 화소기반은 영상의 잡음에 매우 민감한 특성을 가지므로, 최적경로를 구하기 위한 동적계획법 과정 중, 비용행렬이 구해졌을 때, 그에 따라 함께 생성되는 방향요소들을 검사하여, 잡음에 의해 올바르지 않은 경로를 생성시킬 수 있는 방향들을 제거하는 방법을 사용한다. 실험결과는 제안한 방법이 대부분의 영상잡음에 의한 변이값의 잡음들을 효과적으로 제거하고, 매우 짧은 시간에 좋은 결과의 변이맵을 생성시킴을 보여준다.
A seam-line determination algorithm is proposed to determine image border-line in mosaicing using the transformation of gray value differences and dynamic programming. Since visually good border-line is the one along which pixel differences are as small as possible, it can be determined in association with an optimal path finding algorithm. A well-known effective optimal path finding algorithm is the Dynamic Programming (DP). Direct application of the dynamic programming to the seam-line determination causes the distance effect, in which seam-line is affected by its length as well as the gray value difference. In this paper, an adaptive cost transform algorithm with which the distance effect is suppressed is proposed in order to utilize the dynamic programming on the transformed pixel difference space. Also, a figure of merit which is the summation of fixed number of the biggest pixel difference on the seam-line (SFBPD) is suggested as an evaluation measure of seamlines. The performance of the proposed algorithm has been tested in both quantitively and visually on various kinds of images.
This paper proposes a novel feature extraction method for unsupervised multispectral image segmentation based in one dimensional combined neighborhood differences (1D CND). In contrast with the original CND, which is applied with traditional image, 1D CND is computed on a single pixel with various bands. The proposed algorithm utilizes the sign of differences between bands of the pixel. The difference values are thresholded to form a binary codeword. A binomial factor is assigned to these codeword to form another unique value. These values are then grouped to construct the 1D CND feature image where is used in the unsupervised image segmentation. Various experiments using two LANDSAT multispectral images have been performed to evaluate the segmentation and classification accuracy of the proposed method. The result shows that 1D CND feature outperforms the spectral feature, with average classification accuracy of 87.55% whereas that of spectral feature is 55.81%.
스테레오 매칭 과정에 있어서 매칭 비용을 구하는 것은 매우 중요한 과정이다. 이러한 스테레오 매칭 과정의 성능을 살펴보기 위하여 본 논문에서는 기존에 제안된 매칭 비용 함수들에 대한 기본 개념들을 소개하고 각각의 성능 및 장점을 분석하고자 한다. 가장 간단한 매칭 비용 함수는 매칭 되는 영상의 일관된 밝기를 이용하여 좌, 우 영상 간 서로 대응하는 대응점을 추정하는 과정으로, 본 논문에서 다루는 매칭 비용함수는 화소 기반과 윈도우 기반의 매칭 비용 방법으로 크게 두 가지로 나눌 수 있다. 화소 기반의 방법으로는 절대 밝기차(the absolute intensity differences: AD)와 sampling-intensitive absolute differences of Birchfield and Tomasi (BT) 방법이 있고, 윈도우 기반의 방법으로는 차이 절대 값의 합(sum of the absolute differences: SAD), 차이 제곱 값의 합(sum of squred differences: SSD), 표준화 상호상관성(normalized cross-correlation: NCC), 제로 평균 표준화 상호 상관성(zero-mean normalized cross-correlation: ZNCC), census transform, the absolute differences census transform (AD-Census) 이 있다. 본 논문에서는 앞서 언급한 기존에 제안된 매칭 비용 함수들을 정확도와 시간 복잡도를 측정했다. 정확도 측면에서 AD-Census 방법이 평균적으로 가장 낮은 매칭 율을 보여줬고, 제로 평균 표준화 상호 상관성 방법은 non-occlusion과 all 평가 항목에서 가장 낮은 매칭 오차율을 보여 주지만, discontinuities 평가 항목에서는 블러 효과 때문에 높은 매칭 오차율을 보여 주었다. 시간 복잡도 측면에서는 화소 기반인 절대 밝기차 방법이 낮은 복잡도를 보여 주였다.
It is necessary to improve the exactness and adaptation of the working environment for the intelligent robot system. The vision sensor have been studied for a long time at this points. However, it has many processes and difficulties for the real usages. This paper proposes a visual servoing in the virtual environment to support OLP(Off-Line-Programming) path compensation and supplement the problem of complexity of the old kinematical calibration. Initial robot path could be compensated by pixel differences between real and virtual image. This method removes the varies calibrations and 3D reconstruction process in real working space. To show the validity of the proposed approach, virtual space servoing with stereo camera is carried out with WTK and openGL library for a KUKA-6R manipulator and updated real robot path.
Purpose: To clarify the usefulness and the limitation of Digora system/sup (R)/ by evaluating the physical characteristics as the quantitative image on Image Plate(Ip). Materials and Methods: Radiograms were taken by Heliodent MD(Siemens Co.. Germany) with the image plate for adult. Cu-step wedge as reference material. and three pieces of dry mandibular bone. Image analysis was performed by single color enhancement. density measurement with histogram. The relationship between the exposure conditions and the distribution of the pixel values of the image. the variation of pixel values of each step of Cu-step wedge at two different area and Cu-equivalent value of three pieces of dry mandibular bone measure by the conversion equation. Results: There was no linear relationship between the exposure condition and the average pixel value of the image. of which the distribution was not even. The pixel value differences between the center portion and the periphery were ranged from 60 to 70 in vertical plane and from 15 to 26 in horizontal plane. Two plot profile formed at two different areas of the Cu-step wedge were different. The measured Cu-equivalent values showed the discrepancy among the times of measurement. Conclusion: As above results. Image Plate(Ip) of Digora system/sup (R)/ showed the limitation as the quantitative image. The physical property of IP was expected to need to be compensated for the quantitative evaluation of the bone or others
Recently, deep learning and machine learning have attracted considerable attention and many supporting frameworks appeared. In artificial intelligence field, a large body of research is underway to apply the relevant knowledge for complex problem-solving, necessitating the application of various learning algorithms and training methods to artificial intelligence systems. In addition, there is a dearth of performance evaluation of decision making agents. The decision making agent that can find optimal solutions by using reinforcement learning methods designed through this research can collect raw pixel data observed from dynamic environments and make decisions by itself based on the data. The decision making agent uses convolutional neural networks to classify situations it confronts, and the data observed from the environment undergoes preprocessing before being used. This research represents how the convolutional neural networks and the decision making agent are configured, analyzes learning performance through a value-based algorithm and a policy-based algorithm : a Deep Q-Networks and a Policy Gradient, sets forth their differences and demonstrates how the convolutional neural networks affect entire learning performance when using pixel data. This research is expected to contribute to the improvement of artificial intelligence systems which can efficiently find optimal solutions by using features extracted from raw pixel data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.